Search results for: numerical methods
5932 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading
Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera
Abstract:
For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.
Keywords: Blast phenomenon, experimental methods, material models, numerical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11335931 Some Results on New Preconditioned Generalized Mixed-Type Splitting Iterative Methods
Authors: Guangbin Wang, Fuping Tan, Deyu Sun
Abstract:
In this paper, we present new preconditioned generalized mixed-type splitting (GMTS) methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GMTS methods converge faster than the GMTS method whenever the GMTS method is convergent. Finally, we give a numerical example to confirm our theoretical results.
Keywords: Preconditioned, GMTS method, linear system, convergence, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14445930 The Differential Transform Method for Advection-Diffusion Problems
Authors: M. F. Patricio, P. M. Rosa
Abstract:
In this paper a class of numerical methods to solve linear and nonlinear PDEs and also systems of PDEs is developed. The Differential Transform method associated with the Method of Lines (MoL) is used. The theory for linear problems is extended to the nonlinear case, and a recurrence relation is established. This method can achieve an arbitrary high-order accuracy in time. A variable stepsize algorithm and some numerical results are also presented.
Keywords: Method of Lines, Differential Transform Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17425929 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline
Authors: Zuodong Liang, Dong-Sheng Jeng
Abstract:
Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.Keywords: Pore pressure, 3D wave model, seabed liquefaction, pipeline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10375928 Numerical Inverse Laplace Transform Using Chebyshev Polynomial
Authors: Vinod Mishra, Dimple Rani
Abstract:
In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.
Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14015927 Application of the Hybrid Methods to Solving Volterra Integro-Differential Equations
Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov
Abstract:
Beginning from the creator of integro-differential equations Volterra, many scientists have investigated these equations. Classic method for solving integro-differential equations is the quadratures method that is successfully applied up today. Unlike these methods, Makroglou applied hybrid methods that are modified and generalized in this paper and applied to the numerical solution of Volterra integro-differential equations. The way for defining the coefficients of the suggested method is also given.Keywords: Integro-differential equations, initial value problem, hybrid methods, predictor-corrector method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17315926 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory
Authors: Reza Mohammadi, Mahdieh Sahebi
Abstract:
We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.Keywords: Fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11835925 Quartic Nonpolynomial Spline Solutions for Third Order Two-Point Boundary Value Problem
Authors: Talaat S. El-Danaf
Abstract:
In this paper, we develop quartic nonpolynomial spline method for the numerical solution of third order two point boundary value problems. It is shown that the new method gives approximations, which are better than those produced by other spline methods. Convergence analysis of the method is discussed through standard procedures. Two numerical examples are given to illustrate the applicability and efficiency of the novel method.Keywords: Quartic nonpolynomial spline, Two-point boundary value problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20075924 Numerical Simulation of Thermoreversible Polymer Gel Filtration
Authors: Said F. Urmancheev, Victor N. Kireev, Svetlana F. Khizbullina
Abstract:
This paper presents results of numerical simulation of filtration of abnormal thermoviscous fluid on an example of thermo reversible polymer gel.
Keywords: Abnormal thermoviscous fluid, filtration, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14595923 Establishing of Education Strategy in New Technological Environments with using Student Feedback
Authors: Ali Kartal
Abstract:
According to the new developments in the field of information and communication technologies, the necessity arises for active use of these new technologies in education. It is clear that the integration of technology in education system will be different for primary-higher education or traditional- distance education. In this study, the subject of the integration of technology for distance education was discussed. The subject was taken from the viewpoint of students. With using the information of student feedback about education program in which new technological medias are used, how can survey variables can be separated into the factors as positive, negative and supporter and how can be redesigned education strategy of the higher education associations with the examining the variables of each determinated factor is explained. The paper concludes with the recommendations about the necessitity of working as a group of different area experts and using of numerical methods in establishing of education strategy to be successful.
Keywords: Distance education, student feedback, working as a group, numerical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15255922 New High Order Group Iterative Schemes in the Solution of Poisson Equation
Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali
Abstract:
We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.
Keywords: Explicit group iterative method, finite difference, fourth order compact, Poisson equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16795921 Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations
Authors: Naveed Ahmed, Gunar Matthies
Abstract:
We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)- methods are accurate of order k +1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k +1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared.
Keywords: Convection-diffusion-reaction equations, stabilized finite elements, discontinuous Galerkin, continuous Galerkin-Petrov.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17495920 Fin Spacing Effect of the Tube Fin Heat Exchanger at the Floor Heating Convector
Authors: F. Lemfeld, K. Frana
Abstract:
This article deals with numerical simulation of the floor heating convector in 3D. Numerical simulation is focused on cooling mode of the floor heating convector. Geometrical model represents section of the heat exchanger – two fins with the gap between, pipes are not involved. Two types of fin are examined – sinusoidal and angular shape with different fin spacing. Results of fin spacing in case of constant Reynolds number are presented. For the numerical simulation was used commercial software Ansys Fluent.Keywords: fin spacing, cooling output, floor heating convector, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19605919 Effect of Scalping on the Mechanical Behavior of Coarse Soils
Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane
Abstract:
This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.Keywords: Coarse soils, scalping, substitution, discrete element method, triaxial test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6525918 Preconditioned Generalized Accelerated Overrelaxation Methods for Solving Certain Nonsingular Linear System
Authors: Deyu Sun, Guangbin Wang
Abstract:
In this paper, we present preconditioned generalized accelerated overrelaxation (GAOR) methods for solving certain nonsingular linear system. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give two numerical examples to confirm our theoretical results.
Keywords: Preconditioned, GAOR method, linear system, convergence, comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15665917 Design Methodology through Risk Assessment of Massive Water Retaining Structures
Authors: A. Rouili
Abstract:
In the present paper the results of a numerical study are presented, numerical models were developed to simulate the behaviour of vertical massive dikes. The proposed models were developed according to the geometry, boundary conditions, loading conditions and initial conditions of a physical model taken as reference. The results obtained were compared to the experimental data. As far as the overall behaviour, the displacements and the failure mechanisms of the dikes is concerned, the numerical results were in good agreement with the experimental results, which clearly indicates a good quality of numerical modelling. The validated numerical models were used in a parametric study were the displacements and failure mechanisms were fully investigated. Out of the results obtained, some conclusions and recommendations related to the design of massive dikes are proposed.
Keywords: Water conservation, dikes, risk assessment and numerical modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15475916 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams
Authors: Z. Heirany, M. Ghaemian
Abstract:
Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.Keywords: Numerical methods; concrete gravity dams; finiteelement method; boundary condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23325915 Numerical Simulation of Minimum Distance Jet Impingement Heat Transfer
Authors: Aman Agarwal, Georg Klepp
Abstract:
Impinging jets are used in various industrial areas as a cooling and drying technique. The current research is concerned with the means of improving the heat transfer for configurations with a minimum distance of the nozzle to the impingement surface. The impingement heat transfer is described using numerical methods over a wide range of parameters for an array of planar jets. These parameters include varying jet flow speed, width of nozzle, distance of nozzle, angle of the jet flow, velocity and geometry of the impingement surface. Normal pressure and shear stress are computed as additional parameters. Using dimensionless characteristic numbers the parameters and the results are correlated to gain generalized equations. The results demonstrate the effect of the investigated parameters on the flow.Keywords: Heat Transfer Coefficient, Minimum distance jet impingement, Numerical simulation, Dimensionless coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23535914 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.
Keywords: Radial basis functions, Hermite finite difference, Helmholtz equation, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285913 A Dual Method for Solving General Convex Quadratic Programs
Authors: Belkacem Brahmi, Mohand Ouamer Bibi
Abstract:
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.
Keywords: Convex quadratic programming, dual support methods, active set methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18935912 On a New Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Authors: R. B. Ogunrinde
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.Keywords: Differential equations, Numerical, Initial value problem, Polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17715911 Numerical Simulation for a Shallow Braced Excavation of Campus Building
Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu
Abstract:
In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.
Keywords: Excavation, numerical simulation, rido, retaining structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9165910 An Eulerian Numerical Method and its Application to Explosion Problems
Authors: Li Hao, Yan Zhang, Jingan Cui
Abstract:
The Eulerian numerical method is proposed to analyze the explosion in tunnel. Based on this method, an original software M-MMIC2D is developed by Cµ program language. With this software, the explosion problem in the tunnel with three expansion-chambers is numerically simulated, and the results are found to be in full agreement with the observed experimental data.Keywords: Eulerian method, numerical simulation, shock wave, tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14525909 An Experimental and Numerical Investigation of Press Force and Weld Line Displacement of Tailor Welded Blanks in Conventional and Rubber Pad Sheet Metal Forming
Authors: Amir Ansari, Ehsan Shahrjerdi, Ehsan Amini
Abstract:
To investigate the behavior of sheet metals during forming tailor welded blanks (TWB) of various thickness made via Co2 Laser welding are under consideration. These blanks are formed used two different forming methods of rubber as well as the conventional punch and die methods. The main research objective is the effects of using a rubber die instead of a solid one the displacement of the weld line and the press force needed for forming. Specimens with thicknesses of 0.5, 0.6, 0.8 and 1mm are subjected to Erichsen two dimensional tests and the resulted force for each case are compared. This is followed by a theoretical and numerical study of press force and weld line displacement. It is concluded that using rubber pad forming (RPF) causes a reduction in weld line displacement and an increase in the press force.Keywords: Rubber pad forming, Tailor welded blank, Thickness ratio, Weld line displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16185908 Role of Association Rule Mining in Numerical Data Analysis
Authors: Sudhir Jagtap, Kodge B. G., Shinde G. N., Devshette P. M
Abstract:
Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed.Keywords: Numerical data analysis, Data Mining, Association Rule Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28605907 Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations
Authors: Zanariah Abdul Majid, Mohamed Suleiman
Abstract:
The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.Keywords: Numerical methods, parallel method, block method, higher order ODEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13815906 Numerical Simulation of High Pressure Hydrogen Emerges to Air
Authors: Mohamed H. Elhsnawi, Mesbah M. Salem, Saleh B. Mohamed
Abstract:
Numerical simulation performed to investigate the behavior of the high pressure hydrogen jetting of air. High pressure hydrogen (30–40 MPa) was injected to air at atmospheric pressure through 2mm orifice. Numerical simulations were performed with Kiva3V code with 2D axisymmetric geometry. Numerical simulations showed that auto ignition of high pressure hydrogen to air are possible due to molecular diffusion. Auto ignition was predicted at hydrogen-air contact surface due to mass and energy exchange between high temperature hydrogen and air heated by shock wave.
Keywords: Spontaneous Ignition, Diffusion Ignition, Hydrogen ignition, Hydrogen Jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19055905 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium
Authors: Piotr Ciuman, Barbara Lipska
Abstract:
The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.
Keywords: Experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations, CFD, thermal and humidity conditions, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14975904 Computable Function Representations Using Effective Chebyshev Polynomial
Authors: Mohammed A. Abutheraa, David Lester
Abstract:
We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.
Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30865903 The Ratios between the Spectral Norm, the Numerical Radius and the Spectral Radius
Authors: Kui Du
Abstract:
Recently, Uhlig [Numer. Algorithms, 52(3):335-353, 2009] proposed open questions about the ratios between the spectral norm, the numerical radius and the spectral radius of a square matrix. In this note, we provide some observations to answer these questions.
Keywords: Spectral norm, Numerical radius, Spectral radius, Ratios
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824