Search results for: geometrical integrity
369 Fingerprint Identification using Discretization Technique
Authors: W. Y. Leng, S. M. Shamsuddin
Abstract:
Fingerprint based identification system; one of a well known biometric system in the area of pattern recognition and has always been under study through its important role in forensic science that could help government criminal justice community. In this paper, we proposed an identification framework of individuals by means of fingerprint. Different from the most conventional fingerprint identification frameworks the extracted Geometrical element features (GEFs) will go through a Discretization process. The intention of Discretization in this study is to attain individual unique features that could reflect the individual varianceness in order to discriminate one person from another. Previously, Discretization has been shown a particularly efficient identification on English handwriting with accuracy of 99.9% and on discrimination of twins- handwriting with accuracy of 98%. Due to its high discriminative power, this method is adopted into this framework as an independent based method to seek for the accuracy of fingerprint identification. Finally the experimental result shows that the accuracy rate of identification of the proposed system using Discretization is 100% for FVC2000, 93% for FVC2002 and 89.7% for FVC2004 which is much better than the conventional or the existing fingerprint identification system (72% for FVC2000, 26% for FVC2002 and 32.8% for FVC2004). The result indicates that Discretization approach manages to boost up the classification effectively, and therefore prove to be suitable for other biometric features besides handwriting and fingerprint.Keywords: Discretization, fingerprint identification, geometrical features, pattern recognition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360368 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations
Authors: M. Mazraehli, F. Mehrabani, S. Zare
Abstract:
In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.
Keywords: Distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799367 Reliability of Chute-Feeders in Automatic Machines of High Production Capacity
Authors: R. Usubamatov, A. Usubamatova, S. Hussain
Abstract:
Modern highly automated production systems faces problems of reliability. Machine function reliability results in changes of productivity rate and efficiency use of expensive industrial facilities. Predicting of reliability has become an important research and involves complex mathematical methods and calculation. The reliability of high productivity technological automatic machines that consists of complex mechanical, electrical and electronic components is important. The failure of these units results in major economic losses of production systems. The reliability of transport and feeding systems for automatic technological machines is also important, because failure of transport leads to stops of technological machines. This paper presents reliability engineering on the feeding system and its components for transporting a complex shape parts to automatic machines. It also discusses about the calculation of the reliability parameters of the feeding unit by applying the probability theory. Equations produced for calculating the limits of the geometrical sizes of feeders and the probability of sticking the transported parts into the chute represents the reliability of feeders as a function of its geometrical parameters.Keywords: Chute-feeder, parts, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454366 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications
Authors: Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper suggests a design methodology for the hardware and software of the electronic control unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such thatit incorporates a high performance 32-bit CPU and a separate peripheral controlprocessor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the hardware-in-the-loop simulation (HILS)for electric power steering(EPS) systemswhich consists of the EPS mechanism, the designed ECU, and monitoring tools.
Keywords: Electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3369365 Media and Information Literacy (MIL) for Thai Youths
Authors: Waralak Vongdoiwang Siricharoen, Nattanun Siricharoen
Abstract:
The objectives of this study are to determine the role of media that influence the values, attitudes and behaviors of Thai youths. Analytical qualitative research techniques were used for this purpose. Data collection based techniques was used which were individual interviews and focus group discussions with journalists, sample of high school and university students, and parents. The results show that “Social Media" is still the most popular media for Thai youths. It is also still in the hands of the marketing business and it can motivate Thai youths to do so many things. The main reasons of media exposure are to find quality information that they want quickly, get satisfaction and can use social media to get more exciting and to build communities. They believe that the need for media and information literacy skills is defined as making judgments, personal integrity, training of family and the behavior of close friends.
Keywords: Media and Information Literacy, Making Judgments, Personal integrity, Behavior of close friends
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789364 CFD Parametric Study of Mixers Performance
Authors: Mikhail Strongin
Abstract:
The mixing of two or more liquids is very common in many industrial applications from automotive to food processing. CFD simulations of these processes require comparison with test results. In many cases it is practically impossible. Therefore, comparison provides with scalable tests. So, parameterization of the problem is sufficient to capture the performance of the mixer.
However, the influence of geometrical and thermo-physical parameters on the mixing is not well understood.
In this work influence of geometrical and thermal parameters was studied. It was shown that for full developed turbulent flows (Re > 104), Pet»const and concentration of secondary fluid ~ F(r/l).
In other words, the mixing is practically independent of total flow rate and scale for a given geometry and ratio of flow rates of mixing flows. This statement was proved in present work for different geometries and mixtures such as EGR and water-urea mixture.
Present study has been shown that the best way to improve the mixing is to establish geometry with the lowest Pet number possible by intensifying the turbulence in the domain. This is achievable by using step geometry, impinging flow EGR on a wall, or EGR jets, with a strong change in the flow direction, or using swirler like flow in the domain or combination all of these factors. All of these results are applicable to any mixtures of no compressible fluids.
Keywords: CFD, mixing, fluids, parameterization, scalability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959363 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.
Keywords: Hybrid MAC protocol, data integrity, lightweight encryption, Neighbor based key sharing, Sensor node data processing, Z-MAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564362 Design of an Authentication Protocol for Secure Electronic Seals
Authors: Seongsoo Park, Mun-Kyu Lee, Dong Kyue Kim, Kunsoo Park, Yousung Kang, Sokjoon Lee, Howon Kim, Kyoil Chung
Abstract:
Electronic seal is an electronic device to check the authenticity and integrity of freight containers at the point of arrival. While RFID-based eSeals are gaining more acceptances and there are also some standardization processes for these devices, a recent research revealed that the current RFID-based eSeals are vulnerable to various attacks. In this paper, we provide a feasible solution to enhance the security of active RFID-based eSeals. Our approach is to use an authentication and key agreement protocol between eSeal and reader device, enabling data encryption and integrity check. Our protocol is based on the use of block cipher AES, which is reasonable since a block cipher can also be used for many other security purposes including data encryption and pseudo-random number generation. Our protocol is very simple, and it is applicable to low-end active RFID eSeals.Keywords: Authentication, Container Security, Electronic seal, RFID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900361 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates
Authors: David Boyajian, Tadeh Zirakian
Abstract:
Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.Keywords: Plates, buckling, yielding, low yield point steel, steel plate shear walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206360 On-Line Geometrical Identification of Reconfigurable Machine Tool using Virtual Machining
Authors: Alexandru Epureanu, Virgil Teodor
Abstract:
One of the main research directions in CAD/CAM machining area is the reducing of machining time. The feedrate scheduling is one of the advanced techniques that allows keeping constant the uncut chip area and as sequel to keep constant the main cutting force. They are two main ways for feedrate optimization. The first consists in the cutting force monitoring, which presumes to use complex equipment for the force measurement and after this, to set the feedrate regarding the cutting force variation. The second way is to optimize the feedrate by keeping constant the material removal rate regarding the cutting conditions. In this paper there is proposed a new approach using an extended database that replaces the system model. The feedrate scheduling is determined based on the identification of the reconfigurable machine tool, and the feed value determination regarding the uncut chip section area, the contact length between tool and blank and also regarding the geometrical roughness. The first stage consists in the blank and tool monitoring for the determination of actual profiles. The next stage is the determination of programmed tool path that allows obtaining the piece target profile. The graphic representation environment models the tool and blank regions and, after this, the tool model is positioned regarding the blank model according to the programmed tool path. For each of these positions the geometrical roughness value, the uncut chip area and the contact length between tool and blank are calculated. Each of these parameters are compared with the admissible values and according to the result the feed value is established. We can consider that this approach has the following advantages: in case of complex cutting processes the prediction of cutting force is possible; there is considered the real cutting profile which has deviations from the theoretical profile; the blank-tool contact length limitation is possible; it is possible to correct the programmed tool path so that the target profile can be obtained. Applying this method, there are obtained data sets which allow the feedrate scheduling so that the uncut chip area is constant and, as a result, the cutting force is constant, which allows to use more efficiently the machine tool and to obtain the reduction of machining time.Keywords: Reconfigurable machine tool, system identification, uncut chip area, cutting conditions scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448359 The Main Steamline Break Transient Analysis for Advanced Boiling Water Reactor Using TRACE, PARCS, and SNAP Codes
Authors: H. C. Chang, J. R. Wang, A. L. Ho, S. W. Chen, J. H. Yang, C. Shih, L. C. Wang
Abstract:
To confirm the reactor and containment integrity of the Advanced Boiling Water Reactor (ABWR), we perform the analysis of main steamline break (MSLB) transient by using the TRACE, PARCS, and SNAP codes. The process of the research has four steps. First, the ABWR nuclear power plant (NPP) model is developed by using the above codes. Second, the steady state analysis is performed by using this model. Third, the ABWR model is used to run the analysis of MSLB transient. Fourth, the predictions of TRACE and PARCS are compared with the data of FSAR. The results of TRACE/PARCS and FSAR are similar. According to the TRACE/PARCS results, the reactor and containment integrity of ABWR can be maintained in a safe condition for MSLB.
Keywords: ABWR, TRACE, PARCS, SNAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735358 EGCL: An Extended G-Code Language with Flow Control, Functions and Mnemonic Variables
Authors: Oscar E. Ruiz, S. Arroyave, J. F. Cardona
Abstract:
In the context of computer numerical control (CNC) and computer aided manufacturing (CAM), the capabilities of programming languages such as symbolic and intuitive programming, program portability and geometrical portfolio have special importance. They allow to save time and to avoid errors during part programming and permit code re-usage. Our updated literature review indicates that the current state of art presents voids in parametric programming, program portability and programming flexibility. In response to this situation, this article presents a compiler implementation for EGCL (Extended G-code Language), a new, enriched CNC programming language which allows the use of descriptive variable names, geometrical functions and flow-control statements (if-then-else, while). Our compiler produces low-level generic, elementary ISO-compliant Gcode, thus allowing for flexibility in the choice of the executing CNC machine and in portability. Our results show that readable variable names and flow control statements allow a simplified and intuitive part programming and permit re-usage of the programs. Future work includes allowing the programmer to define own functions in terms of EGCL, in contrast to the current status of having them as library built-in functions.
Keywords: CNC Programming, Compiler, G-code Language, Numerically Controlled Machine-Tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622357 Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT
Authors: Marco Raciti Castelli, Ernesto Benini
Abstract:
This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.Keywords: Wind turbine, NACA 0021, DU 06-W-200.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3824356 Implementing ALD in Product Development: The Effect of Geometrical Dimensions on Tubular Member Deformation
Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Tadayuki Kyoutani, Dai-Heng Chen, Ken Kaminishi
Abstract:
The product development process has undergone many changes concomitant with world progress in order to produce products that meet customer needs quickly and inexpensively. Analysis-Led Design (ALD) is one of the latest methods in the product development process. It focuses more on up-front engineering, a product quality optimization process that starts early in the conceptual design stage. Product development and manufacturing through ALD utilizes digital tools extensively for design, analysis and product optimization. This study uses computer-aided design (CAD) and finite element method (FEM) simulation to examine the modes of deformation of tubular members under axial loading. A multiple-combination impact absorption tubular member, referred to as a compress–expand member, is proposed as a substitute for the conventional thin-walled cylindrical tube to be used as a vehicle’s crash box. The study of deformation modes is crucial for evaluating the geometrical dimension limits by which a member can absorb energy efficiently.
Keywords: Analysis-led design, axial collapse, tubular member, finite element method, thin-walled cylindrical tube, compress-expand member, deformation modes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572355 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors
Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl
Abstract:
The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.
Keywords: Admixture, organisms, porosity and strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711354 Spatial Structure of First-Order Voronoi for the Future of Roundabout Cairo since 1867
Authors: Ali Essam El Shazly
Abstract:
The Haussmannization plan of Cairo in 1867 formed a regular network of roundabout spaces, though deteriorated at present. The method of identifying the spatial structure of roundabout Cairo for conservation matches the voronoi diagram with the space syntax through their geometrical property of spatial convexity. In this initiative, the primary convex hull of first-order voronoi adopts the integral and control measurements of space syntax on Cairo’s roundabout generators. The functional essence of royal palaces optimizes the roundabout structure in terms of spatial measurements and the symbolic voronoi projection of 'Tahrir Roundabout' over the Giza Nile and Pyramids. Some roundabouts of major public and commercial landmarks surround the pole of 'Ezbekia Garden' with a higher control than integral measurements, which filter the new spatial structure from the adjacent traditional town. Nevertheless, the least integral and control measures correspond to the voronoi contents of pollutant workshops and the plateau of old Cairo Citadel with the visual compensation of new royal landmarks on top. Meanwhile, the extended suburbs of infinite voronoi polygons arrange high control generators of chateaux housing in 'garden city' environs. The point pattern of roundabouts determines the geometrical characteristics of voronoi polygons. The measured lengths of voronoi edges alternate between the zoned short range at the new poles of Cairo and the distributed structure of longer range. Nevertheless, the shortest range of generator-vertex geometry concentrates at 'Ezbekia Garden' where the crossways of vast Cairo intersect, which maximizes the variety of choice at different spatial resolutions. However, the symbolic 'Hippodrome' which is the largest public landmark forms exclusive geometrical measurements, while structuring a most integrative roundabout to parallel the royal syntax. Overview of the symbolic convex hull of voronoi with space syntax interconnects Parisian Cairo with the spatial chronology of scattered monuments to conceive one universal Cairo structure. Accordingly, the approached methodology of 'voronoi-syntax' prospects the future conservation of roundabout Cairo at the inferred city-level concept.Keywords: Roundabout Cairo, first-order Voronoi, space syntax, spatial structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688353 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment
Authors: Fares Innal, Yves Dutuit, Mourad Chebila
Abstract:
The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.
Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779352 Blockchain in Saudi e-Government: A Systematic Literature Review
Authors: Haitham Assiri, Majed Eljazzar, Priyadarsi Nanda
Abstract:
The world is gradually entering the fourth industrial revolution. E-Government services are scaling government operations across the globe. However, as promising as an e-Government system would be, it is also susceptible to malicious attacks if not properly secured. In our study, we found that in Saudi Arabia, the e-Government website, Yesser, is vulnerable to external attacks. Obviously, this can lead to a breach of data integrity and privacy. In this paper, a systematic literature review (SLR) was conducted to explore possible ways the Kingdom of Saudi Arabia can take necessary measures to strengthen its e-Government system using blockchain. Blockchain is one of the emerging technologies shaping the world through its applications in finance, elections, healthcare, etc. It secures systems and brings more transparency. A total of 28 papers were selected for this SLR, and 19 of the papers significantly showed that blockchain could enhance the security and privacy of Saudi’s e-Government system. Other papers also concluded that blockchain is effective, albeit with the integration of other technologies like IoT, AI and big data. These papers have been analyzed to sieve out the findings and set the stage for future research into the subject.
Keywords: blockchain, data integrity, e-Government, security threats
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633351 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879350 Object Identification with Color, Texture, and Object-Correlation in CBIR System
Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali
Abstract:
Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027349 JEWEL: A Cosmological Model Due to the Geometrical Displacement of Galactic Object Like Black, White and Worm Holes
Authors: Francesco Pia
Abstract:
Stellar objects such as black, white and worm holes can be the subject of speculative reasoning if represented in a simplified and geometric form in order to be able to move them; and the cosmological model is one of the most important contents in relation to speculations that can then open the way to other aspects that are not strictly speculative but practical, precisely in the Universe represented by us. In this work, thanks to the hypothesis of a very large number of black, white and worm holes present in our Universe, we imagine that they can be moved; it was therefore thought to align them on a plane and following a redistribution, and the boundaries of this plane were ideally joined, giving rise to a sphere that has the stellar objects examined radially distributed. Thanks to geometrical displacements of these stellar objects that do not make each one of them lose their functionality in the region in which they are located, at the end of the speculative process it is possible to highlight a spherical layer that allows a flow from the outside and inside this spherical shell allowing to relate to other external and internal spherical layers; this aspect that seems useful to describe the universe we live in, for example inside one of the spherical shells just described. The name "Jewel" was chosen because, imagining the speculative process present in this work at the end of steps, the cosmological model tends to be "luminous". This cosmological model includes, for each internal part of a generic layer, different and numerous moments of our universe thanks to an eternal flow inward. There are many aspects to explore, one of these is the connection between the outermost and the inside of the spherical layers.
Keywords: Black hole, cosmological model, cosmology, white hole.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571348 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators
Authors: M. A. Okezue, K. L. Clase, S. R. Byrn
Abstract:
The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.
Keywords: Data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516347 Investigation of Optimal Parameter Settings in Super Duplex Welding
Authors: R. M. Chandima Ratnayake, Daniel Dyakov
Abstract:
Super steel materials play a vital role in the construction and fabrication of structural, piping and pipeline components. In assuring the integrity of onshore and offshore operating systems, they enable life cycle costs to be minimized. In this context, Duplex stainless steel (DSS) material related welding on constructions and fabrications plays a significant role in maintaining and assuring integrity at an optimal expenditure over the life cycle of production and process systems as well as associated structures. In DSS welding, factors such as gap geometry, shielding gas supply rate, welding current, and type of the welding process are vital to the final joint performance. Hence, an experimental investigation has been performed using an engineering robust design approach (ERDA) to investigate the optimal settings that generate optimal super DSS (i.e. UNS S32750) joint performance. This manuscript illustrates the mathematical approach and experimental design, optimal parameter settings and results of the verification experiment.Keywords: Duplex stainless steel welding, engineering robust design, mathematical framework, optimal parameter settings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798346 Lagrangian Geometrical Model of the Rheonomic Mechanical Systems
Authors: Camelia Frigioiu, Katica (Stevanovic) Hedrih, Iulian Gabriel Birsan
Abstract:
In this paper we study the rheonomic mechanical systems from the point of view of Lagrange geometry, by means of its canonical semispray. We present an example of the constraint motion of a material point, in the rheonomic case.
Keywords: Lagrange's equations, mechanical system, non-linear connection, rheonomic Lagrange space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676345 Design and Modeling of Human Middle Ear for Harmonic Response Analysis
Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey
Abstract:
The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.
Keywords: Computed tomography, human middle ear, harmonic response, pathologies, tympanic membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013344 Study on the Pavement Structural Performance of Highways in the North China Region Based on Pavement Distress and Ground Penetrating Radar
Authors: Mingwei Yi, Liujie Guo, Zongjun Pan, Xiang Lin, Xiaoming Yi
Abstract:
With the rapid expansion of road construction mileage in China, the scale of road maintenance needs has concurrently escalated. As the service life of roads extends, the design of pavement repair and maintenance emerges as a crucial component in preserving the excellent performance of the pavement. The remaining service life of asphalt pavement structure is a vital parameter in the lifecycle maintenance design of asphalt pavements. Based on an analysis of pavement structural integrity, this study presents a characterization and assessment of the remaining life of existing asphalt pavement structures. It proposes indicators such as the transverse crack spacing and the length of longitudinal cracks. The transverse crack spacing decreases with an increase in maintenance intervals and with the extended use of semi-rigid base layer structures, although this trend becomes less pronounced after maintenance intervals exceed 4 years. The length of longitudinal cracks increases with longer maintenance intervals, but this trend weakens after five years. This system can support the enhancement of standardization and scientific design in highway maintenance decision-making processes.
Keywords: Structural integrity, highways, pavement evaluation, asphalt concrete pavement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19343 Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications
Authors: Mohamad Azmi Haniffa, Fakhruldin Mohd Hashim
Abstract:
Pipeline infrastructures normally represent high cost of investment and the pipeline must be free from risks that could cause environmental hazard and potential threats to personnel safety. Pipeline integrity such monitoring and management become very crucial to provide unimpeded transportation and avoiding unnecessary production deferment. Thus proper cleaning and inspection is the key to safe and reliable pipeline operation and plays an important role in pipeline integrity management program and has become a standard industry procedure. In view of this, understanding the motion (dynamic behavior), prediction and control of the PIG speed is important in executing pigging operation as it offers significant benefits, such as estimating PIG arrival time at receiving station, planning for suitable pigging operation, and improves efficiency of pigging tasks. The objective of this paper is to review recent developments in speed control system of pipeline PIGs. The review carried out would serve as an industrial application in a form of quick reference of recent developments in pipeline PIG speed control system, and further initiate others to add-in/update the list in the future leading to knowledge based data, and would attract active interest of others to share their view points.
Keywords: Pipeline Inspection Gauge (PIG), In Line Inspection Tools (ILI), PIG motion, PIG speed control system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3330342 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.
Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973341 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies
Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox
Abstract:
A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.
Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905340 The Localised Wrinkling of a Stretched Bi-Annular Thin Plate
Authors: Xiang Liu, Ciprian Coman
Abstract:
The wrinkling of a thin elastic bi-annular plate with piecewise-constant mechanical properties, subjected to radial stretching, is considered. The critical wrinkling stretching loading and the corresponding wrinkling patterns are extensively investigated, together with the roles played by both the geometrical and mechanical parameters.
Keywords: bi-annular plate, wrinkling pattern, critical stretching loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465