Search results for: deep deterministic policy gradient
1458 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.
Keywords: Damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991457 A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management
Authors: C. Adam, G. Henri, T. Levent, J.-B. Mauro, A. -L. Mayet
Abstract:
This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.
Keywords: Decentralized Competitive System, Distributed Smart Grid, Multi-Agent System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851456 Strategic Priority of Green ICT Policy in Korea: Applying Analytic Hierarchy Process
Authors: Yong Ho Shim, Ki Youn Kim, Ji Yeon Cho, Jin Kyung Park, Bong Gyou Lee
Abstract:
This study considers priorities of primary goals to increase policy efficiency of Green ICT. Recently several studies have been published that address how IT is linked to climate change. However, most of the previous studies are limited to Green ICT industrial statute and policy directions. This paper present Green ICT policy making processes systematically. As a result of the analysis of Korean Green ICT policy, the following emerged as important to accomplish for Green ICT policy: eco-friendliness, technology evolution, economic efficiency, energy efficiency, and stable supply of energy. This is an initial study analyzing Green ICT policy, which provides an academic framework that can be used a guideline to establish Green ICT policy.Keywords: AHP(Analytic Hierarchy Process), Case Study, Green ICT, Policy Priority
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22291455 Bending Gradient Coefficient Correction for I-Beams
Authors: H. R. Kazemi Nia, A. Yeganeh Fallah
Abstract:
Without uncertainty by applying external loads on beams, bending is created. The created bending in I-beams, puts one of the flanges in tension and the other one in compression. With increasing of bending, compression flange buckled and beam in out of its plane direction twisted, this twisting well-known as Lateral Torsional Buckling. Providing bending moment varieties along the beam, the critical moment is greater than the case its under pure bending. In other words, the value of bending gradient coefficient is always greater than unite. In this article by the use of " ANSYS 10.0" software near 80 3-D finite element models developed for the propose of analyzing beams` lateral torsional buckling and surveying influence of slenderness on beams' bending gradient coefficient. Results show that, presented Cb coefficient via AISC is not correct for some of beams and value of this coefficient is smaller than what proposed by AISC. Therefore instead of using a constant Cb for each case of loading , a function with two criterion for calculation of Cb coefficient for some cases is proposed.Keywords: Beams critical moment, Bending Gradient Coefficient, finite element, Lateral Torsional Buckling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45281454 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13741453 Effect of Different Oils on Quality of Deep-fried Dough Stick
Authors: Nuntaporn Aukkanit
Abstract:
The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.
Keywords: Deep-fried dough stick, palm oil, sunflower oil, rice bran oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511452 Linear Programming Application in Unit Commitment of Wind Farms with Considering Uncertainties
Authors: M. Esmaeeli Shahrakht, A. Kazemi
Abstract:
Due to uncertainty of wind velocity, wind power generators don’t have deterministic output power. Utilizing wind power generation and thermal power plants together create new concerns for operation engineers of power systems. In this paper, a model is presented to implement the uncertainty of load and generated wind power which can be utilized in power system operation planning. Stochastic behavior of parameters is simulated by generating scenarios that can be solved by deterministic method. A mixed-integer linear programming method is used for solving deterministic generation scheduling problem. The proposed approach is applied to a 12-unit test system including 10 thermal units and 2 wind farms. The results show affectivity of piecewise linear model in unit commitment problems. Also using linear programming causes a considerable reduction in calculation times and guarantees convergence to the global optimum. Neglecting the uncertainty of wind velocity causes higher cost assessment of generation scheduling.
Keywords: Load uncertainty, linear programming, scenario generation, unit commitment, wind farm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29361451 Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings
Authors: Haider M. Alsaeq
Abstract:
This research investigates the effects of the opening shape and location on the structural behavior of reinforced concrete deep beam with openings, while keeping the opening size unchanged. The software ANSYS 12.1 is used to handle the nonlinear finite element analysis. The ultimate strength of reinforced concrete deep beam with opening obtained by ANSYS 12.1 shows fair agreement with the experimental results, with a difference of no more than 20%. The present work concludes that the opening location has much more effect on the structural strength than the opening shape. It was concluded that placing the openings near the upper corners of the deep beam may double the strength, and the use of a rectangular narrow opening, with the long sides in the horizontal direction, can save up to 40% of structural strength of the deep beam.Keywords: Deep Beams, Finite Element, Opening, Reinforced Concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42921450 Iris Recognition Based On the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.
Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651449 Child Care Policy in Kazakhstan: A New Model
Authors: Dina Maratovna Aikenova
Abstract:
Child care policy must be a priority area of public authorities in any country. This study investigates child care policy in Kazakhstan in accordance with the current position of children and laws. The results show that Kazakhstan policy in this sphere needs more systematic model including state economic and social measures, parental involvement and role of non-government organizations.
Keywords: Children, Kazakhstan, policy, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34151448 Improved Technique of Non-viral Gene Delivery into Cancer Cells
Authors: D. Vainauska, S. Kozireva, A. Karpovs, M. Chistyakovs, M. Baryshev
Abstract:
Liposomal magnetofection is a simple, highly efficient technology for cell transfection, demonstrating better outcome than a number of other common gene delivery methods. However, aggregate complexes distribution over the cell surface is non-uniform due to the gradient of the permanent magnetic field. The aim of this study was to estimate the efficiency of liposomal magnetofection for prostate carcinoma PC3 cell line using newly designed device, “DynaFECTOR", ensuring magnetofection in a dynamic gradient magnetic field. Liposomal magnetofection in a dynamic gradient magnetic field demonstrated the highest transfection efficiency for PC3 cells – it increased for 21% in comparison with liposomal magnetofection and for 42% in comparison with lipofection alone. The optimal incubation time under dynamic magnetic field for PC3 cell line was 5 minutes and the optimal rotation frequency of magnets – 5 rpm. The new approach also revealed lower cytotoxic effect to cells than liposomal magnetofection.Keywords: Dynamic gradient magnetic field, gene delivery, liposomal magnetofection, prostate cancer cell line
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621447 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem
Authors: Daniel Kostrzewa, Henryk Josiński
Abstract:
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.
Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511446 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images
Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi
Abstract:
This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.Keywords: training algorithm, multiface, static image, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25701445 Numerical Modeling of Various Support Systems to Stabilize Deep Excavations
Authors: M. Abdallah
Abstract:
Urban development requires deep excavations near buildings and other structures. Deep excavation has become more a necessity for better utilization of space as the population of the world has dramatically increased. In Lebanon, some urban areas are very crowded and lack spaces for new buildings and underground projects, which makes the usage of underground space indispensable. In this paper, a numerical modeling is performed using the finite element method to study the deep excavation-diaphragm wall soil-structure interaction in the case of nonlinear soil behavior. The study is focused on a comparison of the results obtained using different support systems. Furthermore, a parametric study is performed according to the remoteness of the structure.Keywords: Deep excavation, ground anchors, interaction, struts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10881444 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making
Authors: Jadwiga R. Ziolkowska
Abstract:
In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20291443 Flexural Strength and Ductility Improvement of NSC beams
Authors: Jun Peng, Johnny Ching Ming Ho
Abstract:
In order to calculate the flexural strength of normal-strength concrete (NSC) beams, the nonlinear actual concrete stress distribution within the compression zone is normally replaced by an equivalent rectangular stress block, with two coefficients of α and β to regulate the intensity and depth of the equivalent stress respectively. For NSC beams design, α and β are usually assumed constant as 0.85 and 0.80 in reinforced concrete (RC) codes. From an earlier investigation of the authors, α is not a constant but significantly affected by flexural strain gradient, and increases with the increasing of strain gradient till a maximum value. It indicates that larger concrete stress can be developed in flexure than that stipulated by design codes. As an extension and application of the authors- previous study, the modified equivalent concrete stress block is used here to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly- and doubly- NSC beams, through which both strength and ductility design limits are improved by taking into account strain gradient effect.Keywords: Concrete beam, Ductility, Equivalent concrete stress, Normal strength, Strain gradient, Strength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851442 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network
Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.
Keywords: Deterministic stable election protocol, energy model, fuzzy logic, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9771441 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331440 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
Sequences of words in text data have long-term dependencies and are known to suffer from vanishing gradient problem when developing deep learning models. Although recurrent networks such as long short-term memory networks help overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine advantages of long short-term memory networks and convolutional neural networks, can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting of a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.
Keywords: Convolutional recurrent networks, hyperparameter tuning, long short-term memory networks, Tukey honest significant differences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151439 The Regional Concept, Public Policy and Policy Spaces: The ARC and TVA
Authors: Jay D. Gatrell, Robert Q. Hanham, Jeff Worsham, Maureen McDorman
Abstract:
This paper examines two policy spaces–the ARC and TVA–and their spatialized politics. The research observes that the regional concept informs public policy and can contribute to the formation of stable policy initiatives. Using the subsystem framework to understand the political viability of policy regimes, the authors conclude policy geographies that appeal to traditional definitions of regions are more stable over time. In contrast, geographies that fail to reflect pre-existing representations of space are engaged in more competitive subsystem politics. The paper demonstrates that the spatial practices of policy regions and their directional politics influence the political viability of programs. The paper concludes that policy spaces should institutionalize pre-existing geographies–not manufacture new ones.
Keywords: Agenda setting, politics, region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14521438 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper, approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered: first one, deterministic (Barker code), and second one, random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.Keywords: Antenna array, detection curves, performance characteristics, quadrature processing, signal detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17741437 Oil Prices Impact on Energy Policy of Kazakhstan
Authors: K. Gabdullin, Y. Bek Ali, N. Aldabek
Abstract:
This paper explores oil prices changes impact on energy policy of Kazakhstan in 2001-2009. It involves the role of oil income to the economic development, process of diversification of internal and external energy policy of Kazakhstan, and the changes in oil law towards subsoil users.
Keywords: diversification, internal energy policy, external energy policy, high oil prices, modernization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25421436 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.
Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12571435 Policy Management Framework for Managing Enterprise Policies
Authors: Dahir A. Ga'al, Wardah Zainal Abidin
Abstract:
Policy management in organizations became rising issue in the last decade. It’s because of today’s regulatory requirements in the organizations. To manage policies in large organizations is an imperative work. However, major challenges facing organizations in the last decade is managing all the policies in the organization and making them an active documents rather than simple (inactive) documents stored in computer hard drive or on a shelf. Because of this challenge, organizations need policy management program. This policy management program can be either manual or automated. This paper presents suggestions towards managing policies in organizations. As well as possible policy management solution or program to be utilized, manual or automated. The research first examines the models and frameworks used for managing policies from various perspectives in the literature of the research area/domain. At the end of this paper, a policy management framework is proposed for managing enterprise policies effectively and in a simplified manner.
Keywords: Policy, policy management, policy management program, policy repository.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26161434 Analytical and Finite Element Analysis of Hydroforming Deep Drawing Process
Authors: Maziar Ramezani, Thomas Neitzert
Abstract:
This paper gives an overview of a deep drawing process by pressurized liquid medium separated from the sheet by a rubber diaphragm. Hydroforming deep drawing processing of sheet metal parts provides a number of advantages over conventional techniques. It generally increases the depth to diameter ratio possible in cup drawing and minimizes the thickness variation of the drawn cup. To explore the deformation mechanism, analytical and numerical simulations are used for analyzing the drawing process of an AA6061-T4 blank. The effects of key process parameters such as coefficient of friction, initial thickness of the blank and radius between cup wall and flange are investigated analytically and numerically. The simulated results were in good agreement with the results of the analytical model. According to finite element simulations, the hydroforming deep drawing method provides a more uniform thickness distribution compared to conventional deep drawing and decreases the risk of tearing during the process.Keywords: Deep drawing, Hydroforming, Rubber diaphragm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29061433 Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average.Keywords: Intra prediction, H.264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18931432 A Low Cost Knowledge Base System Framework for Design of Deep Drawing Die
Authors: Vishal Naranje, S. Kumar
Abstract:
In this paper a low cost knowledge base system (KBS) framework is proposed for design of deep drawing die and procedure for developing system modules. The task of building the system is structured into different modules for major activities of design of deep drawing die. A manufacturability assessment module of the proposed framework is developed to check the manufacturability of deep drawn parts. The technological knowledge is represented by using IF- THEN rules and it is coded in AutoLISP language. The module is designed to be loaded into the prompt area of AutoCAD. The cost of implementation of proposed system makes it affordable for small and medium scale sheet metal industries.Keywords: Knowledge base system, Deep drawing die, Manufacturability, Sheet metal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21191431 The Fiscal-Monetary Policy and Economic Growth in Algeria: VECM Approach
Authors: K. Bokreta, D. Benanaya
Abstract:
The objective of this study is to examine the relative effectiveness of monetary and fiscal policy in Algeria using the econometric modelling techniques of cointegration and vector error correction modelling to analyse and draw policy inferences. The chosen variables of fiscal policy are government expenditure and net taxes on products, while the effect of monetary policy is presented by the inflation rate and the official exchange rate. From the results, we find that in the long-run, the impact of government expenditures is positive, while the effect of taxes is negative on growth. Additionally, we find that the inflation rate is found to have little effect on GDP per capita but the impact of the exchange rate is insignificant. We conclude that fiscal policy is more powerful then monetary policy in promoting economic growth in Algeria.Keywords: Economic growth, fiscal policy, monetary policy, VECM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26551430 The Basic Problems for the Realization of the Concept of Economic Policy
Authors: R. Gvelesiani, I. Gogorishvili
Abstract:
The concept of economic policy and the practical economic policy diverge from each other at a certain stage of development. This is related to the concept of realization of the underlying problems. It comes with all the problems emerged in the market oriented economic order due to the political processes based on social welfare policy. The realization of the concept of economic policy is impeded by economic and political obstacles. If you want to fill the appeared between the concept and reality, it is necessary to identify and avoid these obstacles. It requires the following: increase of the level of the knowledge of prevention technology in understanding of economic relations, as well as political aspects of the formation of ideas; perfection of economic policy toolkit, and political methods. It is necessary to realize what is the main precondition of implementation and further development of the concept of economic policy, as well as the formation of opinions about economic and public safety. This is a broad consensus on the basic values of the content and the scale of action, which the general public wants to be realized.Keywords: Economic Policy, Basic Problems, Social Welfare Policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12731429 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM
Authors: Mehdi Ghayoumi
Abstract:
We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.Keywords: lda, adaptive, svm, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421