Search results for: bending steel frame structure
3677 Establishing a New Simple Formula for Buckling Length Factor (K) of Rigid Frames Columns
Authors: Ehab Hasan Ahmed Hasan Ali
Abstract:
The calculation of buckling length factor (K) for steel frames columns is a major and governing processes to determine the dimensions steel frame columns cross sections during design. The buckling length of steel frames columns has a direct effect on the cost (weight) of using cross section. A new formula is required to determine buckling length factor (K) by simplified way. In this research a new formula for buckling length factor (K) was established to determine by accurate method for a limited interval of columns ends rigidity (GA, GB). The new formula can be used ease to evaluate the buckling length factor without needing to complicated equations or difficult charts.Keywords: Buckling length, New formula, Curve fitting, Simplification, Steel column design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22593676 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure
Authors: H. Nikzad, S. Yoshitomi
Abstract:
This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.
Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9483675 Inter-frame Collusion Attack in SS-N Video Watermarking System
Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi
Abstract:
Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.
Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14973674 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.
Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5283673 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab
Authors: V. Přivřelová
Abstract:
Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.
Keywords: Composite beams, high-performance concrete, highstrength steel, lightweight concrete slab, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25203672 Seismic Performance Assessment of Pre-70 RC Frame Buildings with FEMA P-58
Authors: D. Cardone
Abstract:
Past earthquakes have shown that seismic events may incur large economic losses in buildings. FEMA P-58 provides engineers a practical tool for the performance seismic assessment of buildings. In this study, FEMA P-58 is applied to two typical Italian pre-1970 reinforced concrete frame buildings, characterized by plain rebars as steel reinforcement and masonry infills and partitions. Given that suitable tools for these buildings are missing in FEMA P- 58, specific fragility curves and loss functions are first developed. Next, building performance is evaluated following a time-based assessment approach. Finally, expected annual losses for the selected buildings are derived and compared with past applications to old RC frame buildings representative of the US building stock.Keywords: FEMA P-58, RC frame buildings, plain rebars, masonry infills, fragility functions, loss functions, expected annual loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19263671 Crack Opening Investigation in Fiberconcrete
Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.
Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18563670 Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure
Authors: A. Bayoumi, M. Abdallah, F. Hage Chehade
Abstract:
Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels.Keywords: Bending moment, construction procedure, elastic modulus, relative position, soil, structure location, surface settlement, twin tunnels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14623669 Relocation of Plastic Hinge of Interior Beam-Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames
Authors: P. Wongmatar, C. Hansapinyo, C. Buachart
Abstract:
Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. On the other hand, the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam– column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.Keywords: Relocation, Plastic hinge, Intermediate bar, Tsection steel, Precast concrete frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33453668 The Effects of Asymmetric Bracing on Steel Structures under Seismic Loads
Authors: Mahmoud Miri, Soleiman Maramaee
Abstract:
Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.
Keywords: Seismic analysis, torsion, asymmetric, irregular building, stiffness source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21743667 Asymmetric and Kind of Bracing Effects on Steel Frames Under Earthquake Loads
Authors: Mahmoud Miri, Soliman Maramaee
Abstract:
Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes and kind of bracing (x and chevron bracing) have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.
Keywords: Asymmetric, irregular, seismic analysis, torsion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16383666 Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA
Authors: Himanshu V. Gajjar, Anish H. Gandhi, Harit K. Raval
Abstract:
Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.Keywords: Air V-bending, Finite element analysis, HyperformLS-DYNA, Planner symmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32093665 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14243664 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections
Authors: M. E. Soto-López, I. Gaxiola-Avendaño, A. Reyes-Salazar, E. Bojórquez, S. E. Ruiz
Abstract:
The seismic responses of steel buildings with semirigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to these results, steel buildings with PC are a viable option in high seismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.
Keywords: Inter-story drift, Nonlinear time-history analysis, Post-tensioned connections, Steel buildings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21673663 In-Situ EBSD Observations of Bending for Single-Crystalline Pure Copper
Authors: Takashi Sakai, Saori Yoshikawa, Hideo Morimoto
Abstract:
To understand the material characteristics of singleand poly-crystals of pure copper, the respective relationships between crystallographic orientations and microstructures, and the bending and mechanical properties were examined. And texture distribution is also analyzed. A bending test is performed in a SEM apparatus and while its behaviors are observed in situ. Furthermore, some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from EBSD analyses.
Keywords: Pure Copper, Bending, Single Crystal, SEM-EBSD Analysis, Texture, Microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18463662 High Precision Draw Bending of Asymmetric Channel Section with Restriction Dies and Axial Tension
Authors: Y. Okude, S. Sakaki, S. Yoshihara, B. J. MacDonald
Abstract:
In recent years asymmetric cross section aluminum alloy stock has been finding increasing use in various industrial manufacturing areas such as general structures and automotive components. In these areas, components are generally required to have complex curved configuration and, as such, a bending process is required during manufacture. Undesirable deformation in bending processes such as flattening or wrinkling can easily occur when thin-walled sections are bent. Hence, a thorough understanding of the bending behavior of such sections is needed to prevent these undesirable deformations. In this study, the bending behavior of asymmetric channel section was examined using finite element analysis (FEA). Typical methods of preventing undesirable deformation, such as asymmetric laminated elastic mandrels were included in FEA model of draw bending. Additionally, axial tension was applied to prevent wrinkling. By utilizing the FE simulations effect of restriction dies and axial tension on undesirable deformation during the process was clarified.Keywords: bending, draw bending, asymmetric channel section, restriction dies, axial tension, FEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17193661 Efficient Moment Frame Structure
Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu
Abstract:
A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.
Keywords: Acceptance criteria, modified hybrid joint, repair, seismic loading type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20143660 Seismic Behavior of Steel Structure with Buckling- Restrained Braces
Authors: M. Reza Bagerzadeh Karimi, M. Ali Lotfollahi Yaghin, R. Mehdi Nezhad, V. Sadeghi, M. Aghabalaie
Abstract:
One of the main purposes of designing bucklingrestrained braces is the fact that the entire lateral load is wasted by the braces, the entire gravitational load is moved to the foundation through the beams, and the columns can be moved to the foundation. In other words, braces are designed for bearing lateral load. In the implementation of the structure, it should be noted that the implementation of various parts of the structure must be conducted in such a way that the buckling-restrained braces would not bear the gravitational load. Moreover, this type of brace has been investigated under impact loading, and the design goals of designing method (direct motion) are controlled under impact loading. The results of dynamic analysis are shown as the relocation charts of the floors and switch between the floors. Finally, the results are compared with each other.Keywords: Buckling-Restrained Braced Frame (BRBF), energydissipating, ABAQUS, SAP2000, impact load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27873659 Torsional Rigidities of Reinforced Concrete Beams Subjected to Elastic Lateral Torsional Buckling
Authors: Ilker Kalkan, Saruhan Kartal
Abstract:
Reinforced concrete (RC) beams rarely undergo lateral-torsional buckling (LTB), since these beams possess large lateral bending and torsional rigidities owing to their stocky cross-sections, unlike steel beams. However, the problem of LTB is becoming more and more pronounced in the last decades as the span lengths of concrete beams increase and the cross-sections become more slender with the use of pre-stressed concrete. The buckling moment of a beam mainly depends on its lateral bending rigidity and torsional rigidity. The nonhomogeneous and elastic-inelastic nature of RC complicates estimation of the buckling moments of concrete beams. Furthermore, the lateral bending and torsional rigidities of RC beams and the buckling moments are affected from different forms of concrete cracking, including flexural, torsional and restrained shrinkage cracking. The present study pertains to the effects of concrete cracking on the torsional rigidities of RC beams prone to elastic LTB. A series of tests on rather slender RC beams indicated that torsional cracking does not initiate until buckling in elastic LTB, while flexural cracking associated with lateral bending takes place even at the initial stages of loading. Hence, the present study clearly indicated that the un-cracked torsional rigidity needs to be used for estimating the buckling moments of RC beams liable to elastic LTB.Keywords: Lateral stability, post-cracking torsional rigidity, uncracked torsional rigidity, critical moment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23203658 Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe
Authors: H. Mat Kiah, Rafiziana M. Kasmani, Norazana Ibrahim, Roshafima R. Ali, Aziatul N.Sadikin
Abstract:
An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1m and thus, the pipe was lengthened 1m (based on the centreline length of the segment). Ignition was affected at one end of the vessel while the other end was closed. Only stoichiometric concentration (Ф, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum overpressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed, of 63ms-1, was observed in a gas explosion with bent pipe; greater by a factor of ~3 as compared with straight pipe (23ms-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate, which increases the flame speed.
Keywords: Bending, gas explosion, bending, flame acceleration, overpressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22913657 Experimental and Theoretical Investigation on Notched Specimens Life Under Bending Loading
Authors: Nasim Daemi, Gholam Hossein Majzoobi
Abstract:
In this work, bending fatigue life of notched specimens with various notch geometries and dimensions is investigated by experiment and Manson-Caffin theoretical method. In this theoretical method, fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for plain specimens (without notch). Three notch geometries including ∪-shape, ∨-shape and C -shape notches are considered in this investigation. The experiments are conducted on a rotary bending Moore machine. The specimens are made of a low carbon steel alloy, which has wide application in industry. The stress- life curves are captured for all notched specimen by experiment. The results indicate that Manson-Caffin analytical method cannot adequately predict the fatigue life of notched specimen. However, it seems that the difference between the experiments and Manson-Caffin predictions can be compensated by a proportional factor.Keywords: fatigue life, Mason-Caffin method, notchedspecimen, stress-life curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19503656 Assessment the Effect of Setback in Height of Frame on Reinforcement Structures
Authors: Farshad Mehrabi, Ali kheirodin, Mohsen Gerami
Abstract:
Ambiguities in effects of earthquake on various structures in all earthquake codes would necessitate more study and research concerning influential factors on dynamic behavior. Previous studies which were done on different features in different buildings play a major role in the type of response a structure makes to lateral vibrations. Diagnosing each of these irregularities can help structure designers in choosing appropriate setbacks for decreasing possible damages. Therefore vertical setback is one of the irregularity factors in the height of the building where can be seen in skyscrapers and hotels. Previous researches reveal notable changes in the place of these setbacks showing dynamic response of the structure. Consequently analyzing 48 models of concrete frames for 3, 6 and 9 stories heights with three different bays in general shape of a surface decline by height have been constructed in ETABS2000 software, and then the shape effect of each and every one of these frames in period scale has been discussed. The result of this study reveals that not only mass, stiffness and height but also shape of the frame is influential.Keywords: period, concrete frame, irregularity in height, decrease in plan surface, dynamic behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14003655 The Effect of Laser Surface Melting on the Microstructure and Mechanical Properties of Low Carbon Steel
Authors: Suleiman M. Elhamali, K. M. Etmimi, A. Usha
Abstract:
The paper presents the results of microhardness and microstructure of low carbon steel surface melted using carbon dioxide laser with a wavelength of 10.6μm and a maximum output power of 2000W. The processing parameters such as the laser power, and the scanning rate were investigated in this study. After surface melting two distinct regions formed corresponding to the melted zone MZ, and the heat affected zone HAZ. The laser melted region displayed a cellular fine structures while the HAZ displayed martensite or bainite structure. At different processing parameters, the original microstructure of this steel (Ferrite+Pearlite) has been transformed to new phases of martensitic and bainitic structures. The fine structure and the high microhardness are evidence of the high cooling rates which follow the laser melting. The melting pool and the transformed microstructure in the laser surface melted region of carbon steel showed clear dependence on laser power and scanning rate.Keywords: Carbon steel, laser surface melting, microstructure, microhardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25583654 In-situ Observations Using SEM-EBSD for Bending Deformation in Single-Crystal Materials
Authors: Yuko Matayoshi, Takashi Sakai, Ying-jun Jin, Jun-ichi Koyama
Abstract:
To elucidate the material characteristics of single crystals of pure aluminum and copper, the respective relations between crystallographic orientations and microstructures were examined, along with bending and mechanical properties. The texture distribution was also analysed. Bending tests were performed in a SEM apparatus while its behaviors were observed. Some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from electron backscatter diffraction (EBSD) analyses.
Keywords: Pure aluminum, Pure copper, Single crystal, Bending, SEM-EBSD analysis, Texture, Microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22163653 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods
Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow
Abstract:
A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.
Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25353652 Fragility Assessment for Vertically Irregular Buildings with Soft Storey
Authors: N. Akhavan, Sh. Tavousi Tafreshi, A. Ghasemi
Abstract:
Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.
Keywords: Special steel moment frame, soft storey, incremental dynamic analysis, fragility curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14813651 Study on Bending Characteristics of Square Tube Using Energy Absorption Part
Authors: Shigeyuki Haruyama, Zefry Darmawan, Ken Kaminishi
Abstract:
In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube.
Keywords: Square tube, bending stress, energy absorption, finite element analysis, rigidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13583650 Evaluation of Behavior Factor for Steel Moment-Resisting Frames
Authors: Taïeb Branci, Djamal Yahmi, Abdelhamid Bouchair, Eric Fourneley
Abstract:
According to current seismic codes the structures are calculated using the capacity design procedure based on the concept of shear at the base depending on several parameters including behavior factor which is considered to be the most important parameter. The behavior factor allows designing the structure when it is at its ultimate limit state taking into account its energy dissipation through its plastic deformation. The aim of the present study is to assess the basic parameters on which is composed the behavior factor among them the reduction factor due to ductility, and those due to redundancy and the overstrength for steel moment-resisting frames of different heights and regular configuration. Analyses are conducted on these frames using the nonlinear static method where the effect of some parameters on the behavior factor, such as the number of stories and the number of spans, are taken into account. The results show that the behavior factor is rather sensitive to the variation of the number of stories and bays.
Keywords: Behavior, code, frame, ductility, overstrength, redundancy, plastic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33343649 Cost Optimization of Concentric Braced Steel Building Structures
Authors: T. Balogh, L. G. Vigh
Abstract:
Seismic design may require non-conventional concept, due to the fact that the stiffness and layout of the structure have a great effect on the overall structural behaviour, on the seismic load intensity as well as on the internal force distribution. To find an economical and optimal structural configuration the key issue is the optimal design of the lateral load resisting system. This paper focuses on the optimal design of regular, concentric braced frame (CBF) multi-storey steel building structures. The optimal configurations are determined by a numerical method using genetic algorithm approach, developed by the authors. Aim is to find structural configurations with minimum structural cost. The design constraints of objective function are assigned in accordance with Eurocode 3 and Eurocode 8 guidelines. In this paper the results are presented for various building geometries, different seismic intensities, and levels of energy dissipation.Keywords: Dissipative Structures, Genetic Algorithm, Seismic Effects, Structural Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30143648 Inelastic Strength of Laterally Unsupported Top- Loaded Built-Up Slender Beams
Authors: M. Massoud El Sa'adawy, F. F. F. El Dib
Abstract:
Lateral-torsional buckling (LTB) is one of the phenomenae controlling the ultimate bending strength of steel Ibeams carrying distributed loads on top flange. Built-up I-sections are used as main beams and distributors. This study investigates the ultimate bending strength of such beams with sections of different classes including slender elements. The nominal strengths of the selected beams are calculated for different unsupported lengths according to the Provisions of the American Institute of Steel Constructions (AISC-LRFD). These calculations are compared with results of a nonlinear inelastic study using accurate FE model for this type of loading. The goal is to investigate the performance of the provisions for the selected sections. Continuous distributed load at the top flange of the beams was applied at the FE model. Imperfections of different values are implemented to the FE model to examine their effect on the LTB of beams at failure, and hence, their effect on the ultimate strength of beams. The study also introduces a procedure for evaluating the performance of the provisions compared with the accurate FEA results of the selected sections. A simplified design procedure is given and recommendations for future code updates are made.Keywords: Lateral buckling, Top Loading, Ultimate load, Slender Sections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699