Search results for: Wastewater
204 Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater
Authors: Abimbola M. Enitan, John O. Odiyo, Feroz M. Swalaha
Abstract:
The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.
Keywords: Bacteria, brewery wastewater, real-time quantitative PCR, UASB reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098203 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium
Authors: Kartikaningsih Danis, Yao-Hui Huang
Abstract:
Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.
Keywords: Electrocoagulation, chemical coagulation, aluminum electrode, boron removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741202 High Performance of Hollow Fiber Supported Liquid Membrane to Separate Silver Ions from Medicinal Wastewater
Authors: Thidarat Wongsawa, Ura Pancharoen, Anchaleeporn Waritswat Lothongkum
Abstract:
The separation of silver ions from medicinal wastewater via hollow fiber supported liquid membrane (HFSLM) was examined to promote the performance of this technique. The wastewater consisting of 30mg/L silver ions and 120mg/L ferric ions was used as the feed solution. LIX84I dissolving in kerosene and sodium thiosulfate pentahydrate solution were used as the liquid membrane and stripping solution, respectively. In order to access the highest performance of HFSLM, the optimum condition was investigated via several influential variables. Final concentration of silver ions in feed solution was obtained 0.2mg/L which was lower than the discharge limit of Thailand’s mandatory.
Keywords: Hollow fiber, Liquid membrane, Separation, Silver ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027201 Comparative Analysis of Ranunculus muricatus and Typha latifolia as Wetland Plants Applied for Domestic Wastewater Treatment in a Mesocosm Scale Study
Authors: S. Aziz, M. Ali, S. Asghar, S. Ahmed
Abstract:
Comparing other methods of waste water treatment, constructed wetlands are one of the most fascinating practices because being a natural process they are eco-friendly have low construction and maintenance cost and have considerable capability of wastewater treatment. The current research was focused mainly on comparison of Ranunculus muricatus and Typha latifolia as wetland plants for domestic wastewater treatment by designing and constructing efficient pilot scale horizontal subsurface flow mesocosms. Parameters like chemical oxygen demand, biological oxygen demand, phosphates, sulphates, nitrites, nitrates, and pathogenic indicator microbes were studied continuously with successive treatments. Treatment efficiency of the system increases with passage of time and with increase in temperature. Efficiency of T. latifolia planted setups in open environment was fairly good for parameters like COD and BOD5 which was showing reduction up to 82.5% for COD and 82.6% for BOD5 while DO was increased up to 125%. Efficiency of R. muricatus vegetated setup was also good but lowers than that of T. latifolia planted showing 80.95% removal of COD and BOD5. Ranunculus muricatus was found effective in reducing bacterial count in wastewater. Both macrophytes were found promising in wastewater treatment.
Keywords: Biological oxygen demand, chemical oxygen demand, horizontal subsurface flow, Total suspended solids, Wetland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637200 Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions
Authors: Shirin Shafaei, James R. Bolton, Mohamed Gamal El Din
Abstract:
Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.
Keywords: Photoreactivation, reactivation fluence, river water, temperature, ultraviolet disinfection, wastewater effluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405199 Physico-chemical Treatment of Tar-Containing Wastewater Generated from Biomass Gasification Plants
Authors: Vrajesh Mehta, Anal Chavan
Abstract:
Treatment of tar-containing wastewater is necessary for the successful operation of biomass gasification plants (BGPs). In the present study, tar-containing wastewater was treated using lime and alum for the removal of in-organics, followed by adsorption on powdered activated carbon (PAC) for the removal of organics. Limealum experiments were performed in a jar apparatus and activated carbon studies were performed in an orbital shaker. At optimum concentrations, both lime and alum individually proved to be capable of removing color, total suspended solids (TSS) and total dissolved solids (TDS), but in both cases, pH adjustment had to be carried out after treatment. The combination of lime and alum at the dose ratio of 0.8:0.8 g/L was found to be optimum for the removal of inorganics. The removal efficiency achieved at optimum concentrations were 78.6, 62.0, 62.5 and 52.8% for color, alkalinity, TSS and TDS, respectively. The major advantages of the lime-alum combination were observed to be as follows: no requirement of pH adjustment before and after treatment and good settleability of sludge. Coagulation-precipitation followed by adsorption on PAC resulted in 92.3% chemical oxygen demand (COD) removal and 100% phenol removal at equilibrium. Ammonia removal efficiency was found to be 11.7% during coagulation-flocculation and 36.2% during adsorption on PAC. Adsorption of organics on PAC in terms of COD and phenol followed Freundlich isotherm with Kf = 0.55 & 18.47 mg/g and n = 1.01 & 1.45, respectively. This technology may prove to be one of the fastest and most techno-economically feasible methods for the treatment of tar-containing wastewater generated from BGPs.Keywords: Activated carbon, Alum, Biomass gasification, Coagulation-flocculation, Lime, Tar-containing wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3673198 Phenols and Manganese Removal from Landfill Leachate and Municipal Wastewater Using the Constructed Wetland
Authors: Amin Mojiri, Lou Ziyang
Abstract:
Constructed Wetland (CW) is a reasonable method to treat wastewater. Current study was carried out to co-treat landfill leachate and domestic wastewater using a CW system. Typha domingensis was transplanted to CW, which encloses two substrate layers of adsorbents named ZELIAC and zeolite. Response surface methodology and central composite design were employed to evaluate experimental data. Contact time (h) and leachate-towastewater mixing ratio (%; v/v) were selected as independent factors. Phenols and manganese removal were selected as dependent responses. At optimum contact time (48.7 h) and leachate-towastewater mixing ratio (20.0%), removal efficiencies of phenols and manganese removal efficiencies were 90.5%, and 89.4%, respectively.Keywords: Constructed wetland, manganese, phenols, Thypha domingensis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319197 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor
Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi
Abstract:
Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).Keywords: Adsorption, electrochemical oxidation, metals, sequencing batch reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 797196 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi
Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.
Abstract:
The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.Keywords: Ecological farming system, energy simulation, evaporative cooling system, treated wastewater, temperature, humidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315195 Investigating the Treatability of a Compost Leachate in a Hybrid Anaerobic Reactor: An Experimental Study
Authors: Shima Rajabi, Leila Vafajoo
Abstract:
Compost manufacturing plants are one of units where wastewater is produced in significantly large amounts. Wastewater produced in these plants contains high amounts of substrate (organic loads) and is classified as stringent waste which creates significant pollution when discharged into the environment without treatment. A compost production plant in the one of the Iran-s province treating 200 tons/day of waste is one of the most important environmental pollutant operations in this zone. The main objectives of this paper are to investigate the compost wastewater treatability in hybrid anaerobic reactors with an upflow-downflow arrangement, to determine the kinetic constants, and eventually to obtain an appropriate mathematical model. After starting the hybrid anaerobic reactor of the compost production plant, the average COD removal rate efficiency was 95%.Keywords: Leachate treatment, anaerobic hybrid reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839194 Effect of Domestic Treated Wastewater use on Three Varieties of Quinoa (Chenopodium quinoa) under Semi Arid Conditions
Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Ba Samba M., Hirich A
Abstract:
The purpose of this work was to study the effect of the irrigation using waste water with various electric conductivities (T(0,92ds/m), EC3 (3ds/m) and EC6 (6ds/m) on three varieties of quinoa cultivated in a field south of Morocco. The follow up of the evolution of the chemical and agronomic parameters throughout the culture made it possible to determine the responses to the saline stress in arid conditions. Results showed that the salinity caused the depression of plant-s height, and reduced the fresh and dry weight in the different parts of the three varieties plants. The increase of the irrigation water EC didn-t affect the yield for the varieties. Thus, quinoa resisted to salinity and proved a behavior of a facultative halophyte crop. In fact, the cultivation of this using treated wastewater is feasible especially in arid areas for a sustainable use of water resources.Keywords: Quinoa, salinity, semi-arid, treated wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908193 Quality Parameters of Offset Printing Wastewater
Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana
Abstract:
Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.
Keywords: Pollution, printing industry, simple linear regression analysis, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674192 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer
Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin
Abstract:
New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868191 The Household Behavior on Solid Waste and Wastewater Management in Municipal Area with Cleanliness Policy Determined by Community
Authors: Paiboon Jeamponk
Abstract:
The Bangnanglee Sub-district Administrative Office, Thailand had initiated a policy to environmental protection with encouraging household waste management in order to promote civil responsibility for domestic hygienic. This research studied the household behaviors on solid waste and wastewater management. A sample population of 306 families answered a questionnaire. The study showed that, on average, domestic activities had produced 1.93 kilograms of waste per household per day. It has been found that 79% of the households made several attempts to reduce their own amount of waste. 80% of the households stationed their own garbage bins. 71% managed their waste by selling recyclable products. As for the rest of the waste, 51% burned them, while 29% disposed their waste in the nearby public trashcans and other 13% have them buried. As for wastewater, 60% of the households disposed it into the sewage, whereas 30% disposed them right from their elevated house.Keywords: Environmental integrated management, environmental protection, household waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265190 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane
Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić
Abstract:
Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.
Keywords: Ceramic membrane, edible oil, microfiltration, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628189 Internal Behavior of Biological Nutrient Removal System for Advanced Wastewater Treatment
Authors: J. K. Choi , D. W. Kim, H. S. Shin, H. J. Yeon, B. K. Kim, Yeon. Fan, D. Chang, S. B. Han, J.M. Hur, B. R. Jung, S. M. Park
Abstract:
The purpose of this research was develop a biological nutrient removal (BNR) system which has low energy consumption, sludge production, and land usage. These indicate that BNR system could be a alternative of future wastewater treatment in ubiquitous city(U-city). Organics and nitrogen compounds could be removed by this system so that secondary or tertiary stages of wastewater treatment satisfy their standards. This system was composed of oxic and anoxic filter filed with PVDC and POM media. Anoxic/oxic filter system operated under empty bed contact time of 4 hours by increasing recirculation ratio from 0 to 100 %. The system removals of total nitrogen and COD were 76.3% and 93%, respectively. To be observed internal behavior in this system SCOD, NH3-N, and NO3-N were conducted and removal shows range of 25~100%, 59~99%, and 70~100%, respectively.Keywords: BNR, nitrification, denitrification, organics removal, anoxic, oxic, advanced treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611188 Removal of Hexavalent Chromium from Wastewater by Use of Scrap Iron
Authors: Marius Gheju, Rodica Pode
Abstract:
Hexavalent chromium is highly toxic to most living organisms and a known human carcinogen by the inhalation route of exposure. Therefore, treatment of Cr(VI) contaminated wastewater is essential before their discharge to the natural water bodies. Cr(VI) reduction to Cr(III) can be beneficial because a more mobile and more toxic chromium species is converted to a less mobile and less toxic form. Zero-valence-state metals, such as scrap iron, can serve as electron donors for reducing Cr(VI) to Cr(III). The influence of pH on scrap iron capacity to reduce Cr(VI) was investigated in this study. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the pH, the greater the experiment duration with maximum scrap iron reduction capacity. The experimental results showed that highest maximum reduction capacity of scrap iron was 12.5 mg Cr(VI)/g scrap iron, at pH 2.0, and decreased with increasing pH up to 1.9 mg Cr(VI)/g scrap iron at pH = 7.3.
Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085187 Evaluation Biofilm Sewage Treatment Plant
Authors: K. M. Shahot. I. A. Ekhmaj
Abstract:
The research study is carried out to determine the efficiency of the Biofilm sewage treatment plant which is located at the Engineering Complex-s. Wastewater analyses have been carried out at the Environmental Engineering laboratory to study the six parameters: Biochemical Oxygen Demand BOD, Chemical Oxygen Demand COD l, and Total Suspended Solids TSS, Ammoniac Nitrogen NH3-N and Phosphorous P which have been selected to determine the wastewater quality. The plant was designed to treat 750 Pe (population equivalent) at hydraulic retention time of 5 hours in the aerobic zone. The results show that Biofilm wastewater treatment plant was able to treat sewage successfully at different flow condition. The discharge has fulfilled the Malaysia Environmental of Standard A water quality. The achieved BOD removal is more than 85%, COD is more than 80%, TSS is more than 80%, NH3-N is more than 70%, and P was more than 70%. The Biofilm system provides a very efficient process for sewage treatment and it is compact in structure thus minimizes the required land area.
Keywords: Sewage, Bio film, Cosmo-Ball, Activated sludge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322186 Industrial Wastewater Sludge Treatment in Chongqing, China
Authors: Victor Emery David Jr, Jiang Wenchao, Yasinta John, Md. Sahadat Hossain
Abstract:
Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by increase of wastewater. Treatment and disposal of sludge has been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research therefore considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large.Keywords: Sludge, disposal of sludge, treatment, industrial sludge, Chongqing, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786185 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process
Authors: A. Benhadji, M. Taleb Ahmed
Abstract:
Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.
Keywords: Advanced oxidation processes, chemical oxygen demand, COD, detergent, peroxi electrocoagulation process, PEP, wastewater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917184 Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes
Authors: Anubha Kaushik, Raman Preet
Abstract:
Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.Keywords: Distillery wastewater, hydrogen, microbial consortium, organic pollution, sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937183 Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater
Authors: Abimbola M. Enitan, Josiah Adeyemo
Abstract:
Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (μmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (d¯¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.
Keywords: Brewery wastewater, methane generation model, environment, anaerobic modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4207182 Compost quality Management by Adding Sulfuric Acid and Alkaline Wastewater of Paper Mill as two Amendments
Authors: Hamid Reza Alipour, Ali Mohammadi Torkashvand
Abstract:
In composting process, N high-organic wastes loss the great part of its nitrogen as ammonia; therefore, using compost amendments can promote the quality of compost due to the decrease in ammonia volatilization. With regard to the effect of pH on composting, microorganisms- activity and ammonia volatilization, sulfuric acid and alkaline wastewater of paper mill (as liming agent with Ca and Mg ions) were used as compost amendments. Study results indicated that these amendments are suitable for reclamation of compost quality properties. These held nitrogen in compost caused to reduce C/N ratio. Both amendments had a significant effect on total nitrogen, but it should be used sulfuric acid in fewer amounts (20 ml/kg fresh organic wastes); and the more amounts of acid is not proposed.Keywords: Compost, Paper mill wastewater, sulfuric acid, Ammonia Volatilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882181 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028180 Aeration Optimization in an Activated Sludge Wastewater Treatment Plant Based on CFD Method: A Case Study
Authors: Seyed Sina Khamesi, Rana Rafiei
Abstract:
The extensive aeration process is widely used for wastewater treatment. However, due to the high energy consumption of this process, which is closely related to the issues of environmental sustainability and global climate change, this article presents a simple solution to reduce energy consumption in this process. The amount of required energy is one of the critical considerations for various wastewater treatment techniques. For this purpose, an industrial wastewater treatment plant and all energy-consumer equipment in terms of energy consumption have been analyzed. The investigations and measurements revealed that the aeration unit has the highest energy consumption rate. To address this, an innovative approach is proposed to reduce energy consumption in the identified high-consumer unit. The proposed solution involves introducing baffles to divide the tank into multiple parts and using a tank with a small width and long length to enhance the mixing process. This approach reduces the need for additional equipment and significantly lowers energy consumption. To thoroughly scrutinize the proposed solution and analyze the behavior of the multi-phase fluid inside the tank, the sewage flow has been modeled using the computational fluid dynamics (CFD) method. The study presents an optimal design for the aeration unit based on these findings. The results indicate that implementing the technique suggested in this article can decrease total energy consumption by 33.15% and can be applied to all types of biological treatment plants.
Keywords: Wastewater treatment, aeration, energy consumption, Computational Fluid Dynamics, activated sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 319179 Hydrogen Production from Alcohol Wastewater by Upflow Anaerobic Sludge Blanket Reactors under Mesophilic Temperature
Authors: Thipsalin Poontaweegeratigarn, Sumaeth Chavadej, Pramoch Rangsunvigit
Abstract:
In this work, biohydrogen production via dark fermentation from alcohol wastewater using upflow anaerobic sludge blanket reactors (UASB) with a working volume of 4 L was investigated to find the optimum conditions for a maximum hydrogen yield. The system was operated at different COD loading rates (23, 31, 46 and 62 kg/m3d) at mesophilic temperature (37 ºC) and pH 5.5. The seed sludge was pretreated before being fed to the UASB system by boiling at 95 ºC for 15 min. When the system was operated under the optimum COD loading rate of 46 kg/m3d, it provided the hydrogen content of 27%, hydrogen yield of 125.1 ml H2/g COD removed and 95.1 ml H2/g COD applied, hydrogen production rate of 18 l/d, specific hydrogen production rate of 1080 ml H2/g MLVSS d and 1430 ml H2/ L d, and COD removal of 24%.Keywords: Hydrogen production, Upflow anaerobic sludge blanket reactor (UASB), Optimum condition, Alcohol wastewater
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840178 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass
Authors: A. Driouiche, S. Mohareb, A. Hadfi
Abstract:
In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).
Keywords: Agadir, irrigation, scaling water, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723177 Novel Dual Stage Membrane Bioreactor for the Continuous Remediation of Electroplating Wastewater
Authors: B. A. Q. Santos, S. K. O. Ntwampe, G. Muchatibaya
Abstract:
In this study, the designed dual stage membrane bioreactor (MBR) system was conceptualized for the treatment of cyanide and heavy metals in electroplating wastewater. The design consisted of a primary treatment stage to reduce the impact of fluctuations and the secondary treatment stage to remove the residual cyanide and heavy metal contaminants in the wastewater under alkaline pH conditions. The primary treatment stage contained hydrolyzed Citrus sinensis (C. sinensis) pomace and the secondary treatment stage contained active Aspergillus awamori (A. awamori) biomass, supplemented solely with C. sinensis pomace extract from the hydrolysis process. An average of 76.37%, 95.37%, 93.26 and 94.76% and 99.55%, 99.91%, 99.92% and 99.92% degradation efficiency for total cyanide (T-CN), including the sorption of nickel (Ni), zinc (Zn) and copper (Cu) were observed after the first and second treatment stages, respectively. Furthermore, cyanide conversion by-products degradation was 99.81% and 99.75 for both formate (CHOO-) and ammonium (NH4 +) after the second treatment stage. After the first, second and third regeneration cycles of the C. sinensis pomace in the first treatment stage, Ni, Zn and Cu removal achieved was 99.13%, 99.12% and 99.04% (first regeneration cycle), 98.94%, 98.92% and 98.41% (second regeneration cycle) and 98.46 %, 98.44% and 97.91% (third regeneration cycle), respectively. There was relatively insignificant standard deviation detected in all the measured parameters in the system which indicated reproducibility of the remediation efficiency in this continuous system.
Keywords: Aspergillus awamori, Citrus sinensis pomace, electroplating wastewater remediation, membrane bioreactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147176 Heavy Metals Transport in the Soil Profiles under the Application of Sludge and Wastewater
Authors: A. Behbahaninia, S. A. Mirbagheri, A. H. Javid
Abstract:
Heavy metal transfer in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban area of developing countries. In this study soil samples under sludge application and wastewater irrigation were studied and soil samples were collected in the soil profiles from the surface to 100 cm in depth. For this purpose, three plots were made in a treatment plant in south of Tehran-Iran. First plot was irrigated just with effluent from wastewater treatment plant, second plot with simulated heavy metals concentration equal 50 years irrigation and in third plot sewage sludge and effluent was used. Trace metals concentration (Cd, Cu) were determined for soil samples. The results indicate movement of metals was observed, but the most concentration of metals was found in topsoil samples. The most of Cadmium concentration was measured in the topsoil of plot 3, 4.5mg/kg and Maximum cadmium movement was observed in 0-20 cm. The most concentration of copper was 27.76mg/kg, and maximum percolation in 0-20 cm. Metals (Cd, Cu) were measured in leached water. Preferential flow and metal complexation with soluble organic apparently allow leaching of heavy metals.Keywords: Heavy metal, sludge, soil, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787175 Biosorption of Heavy Metals by Low Cost Adsorbents
Authors: Azam Tabatabaee, Fereshteh Dastgoshadeh, Akram Tabatabaee
Abstract:
This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents.Keywords: Adsorbents, heavy metals, commercial adsorbents, wastewater, by-products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471