Search results for: Taguchi method
8062 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method
Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh
Abstract:
This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.
Keywords: Bath parameters, coatings, design of experiment, fracture toughness, impact strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13028061 Experimental Investigation on Over-Cut in Ultrasonic Machining of WC-Co Composite
Authors: Ravinder Kataria, Jatinder Kumar, B. S. Pabla
Abstract:
Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard, and fragile such as advanced ceramics, refractories, crystals, quartz etc. Present article has been targeted at investigating the impact of different experimental conditions (power rating, cobalt content, tool material, thickness of work piece, tool geometry, and abrasive grit size) on over cut in ultrasonic drilling of WC-Co composite material. Taguchi’s L-36 orthogonal array has been employed for conducting the experiments. Significant factors have been identified using analysis of variance (ANOVA) test. The experimental results revealed that abrasive grit size and tool material are most significant factors for over cut.
Keywords: ANOVA, Abrasive grit size, Taguchi, WC-Co, ultrasonic machining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16888060 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company
Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze
Abstract:
As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9778059 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel
Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini
Abstract:
Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.
Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23258058 Kinematic Optimal Design on a New Robotic Platform for Stair Climbing
Authors: Byung Hoon Seo, Hyun Gyu Kim, Tae Won Seo
Abstract:
Stair climbing is one of critical issues for field robots to widen applicable areas. This paper presents optimal design on kinematic parameters of a new robotic platform for stair climbing. The robotic platform climbs various stairs by body flip locomotion with caterpillar type main platform. Kinematic parameters such as platform length, platform height, and caterpillar rotation speed are optimized to maximize stair climbing stability. Three types of stairs are used to simulate typical user conditions. The optimal design process is conducted based on Taguchi methodology, and resulting parameters with optimized objective function are presented. In near future, a prototype is assembled for real environment testing.Keywords: Stair climbing robot, Optimal design, Taguchi methodology, Caterpillar, Kinematic parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22998057 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: Emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9898056 Investigations on the Influence of Process Parameters on the Sliding Wear Behavior of Components Produced by Direct Metal Laser Sintering (DMLS)
Authors: C. D. Naiju, K. Annamalai, Siva Prasad Darla, Y. Murali Krishna
Abstract:
This work presents the results of a study carried out to determine the sliding wear behavior and its effect on the process parameters of components manufactured by direct metal laser sintering (DMLS). A standard procedure and specimen had been used in the present study to find the wear behavior. Using Taguchi-s experimental technique, an orthogonal array of modified L8 had been developed. Sliding wear testing using pin-on-disk machine was carried out and analysis of variance (ANOVA) technique was used to investigate the effect of process parameters and to identify the main process parameter that influences the properties of wear behavior on the DMLS components. It has been found that part orientation, one of the selected process parameter had more influence on wear as compared to other selected process parameters.Keywords: ANOVA, DMLS, Taguchi, Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20838055 Using Submerge Fermentation Method to Production of Extracellular Lipase by Aspergillus niger
Authors: Masoumeh Ghasemi, Afshin Farahbakhsh, Arman Farahbakhsh, Ali Asghar Safari
Abstract:
In this study, lipase production has been investigated using submerge fermentation by Aspergillus niger in Kilka fish oil as main substrate. The Taguchi method with an L9 orthogonal array design was used to investigate the effect of parameters and their levels on lipase productivity. The optimum conditions for Kilka fish oil concentration, incubation temperature and pH were obtained 3 gr./ml 35°C and 7, respectively. The amount of lipase activity in optimum condition was obtained 4.59IU/ml. By comparing this amount with the amount of productivity in the olive oil medium based on the cost of each medium, it was that using Kilka fish oil is 84% economical. Therefore Kilka fish oil can be used as an economical and suitable substrate in the lipase production and industrial usages.
Keywords: Lipase, Aspergillus niger, Kilka Fish oil, Submerge Fermentation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28768054 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique
Authors: Mandeep Kumar, Hari Singh
Abstract:
The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.
Keywords: ANOVA, DOE, inconel, machining, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14228053 Surface Roughness Evaluation for EDM of En31 with Cu-Cr-Ni Powder Metallurgy Tool
Authors: Amoljit S. Gill, Sanjeev Kumar
Abstract:
In this study, Electrical Discharge Machining (EDM) is used to modify the surface of high carbon steel En31 with the help of tool electrode (Copper-Chromium-Nickel) manufactured by powder metallurgy (PM) process. The effect of EDM on surface roughness during surface alloying is studied. Taguchi’s Design of experiment (DOE) and L18 orthogonal array is used to find the best level of input parameters in order to achieve high surface finish. Six input parameters are considered and their percentage contribution towards surface roughness is investigated by analysis of variances (ANOVA). Experimental results show that an hard alloyed surface (1.21% carbon, 2.14% chromium and 1.38% nickel) with surface roughness of 3.19µm can be generated using EDM with PM tool. Additionally, techniques like Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) are used to analyze the machined surface and EDMed layer composition, respectively. The increase in machined surface micro-hardness (101%) may be related to the formation of carbides containing chromium.
Keywords: Electrical Discharge Machining, Surface Roughness, Powder metallurgy compact tools, Taguchi DOE technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28748052 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives Using Taguchi Experimental Design Methodology
Authors: P. Pimsee, C. Sablayrolles, P. de Caro, J. Guyomarch, N. Lesage, M. Montréjaud-Vignoles
Abstract:
The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 polycyclic aromatic hydrocarbons (PAHs) and derivates, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For Gasoline (SP95-E10) and Diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.
Keywords: Monitoring, PAHs, SBSE, water soluble fraction, Taguchi experimental design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19748051 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique
Authors: A. Jabbari, M. Shakeri, A. Nabavi
Abstract:
In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25038050 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites
Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande
Abstract:
The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.
Keywords: Delamination, FRP composite, multi response optimization, Taguchi design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12338049 Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite
Authors: S. Srinivasa Moorthy, K. Manonmani
Abstract:
The new, polymer composites consisting of e-glass fiber reinforcement with titanium oxide filler in the double bonded unsaturated polyester resin matrix were made. The glass fiber and titanium oxide reinforcement composites were made in three different fiber lengths (3cm, 5cm, and 7cm), filler content (2 wt%, 4 wt%, and 6 wt%) and fiber content (20 wt%, 40 wt%, and 60 wt%). 27 different compositions were fabricated and a sequence of experiments were carried out to determine tensile strength and impact strength. The vital influencing factors fiber length, fiber content and filler content were chosen as 3 factors in 3 levels of Taguchi’s L9 orthogonal array. The influences of parameters were determined for tensile strength and impact strength by Analysis of variance (ANOVA) and S/N ratio. Using Artificial Neural Network (ANN) an expert system was devised to predict the properties of hybrid reinforcement GFRP composites. The predict models were experimentally proved with the maximum coincidence.
Keywords: Analysis of variance (ANOVA), Artificial neural network (ANN), Polymer composites, Taguchi’s orthogonal array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24008048 Structural Design Strategy of Double-Eccentric Butterfly Valve using Topology Optimization Techniques
Authors: Jun-Oh Kim, Seol-Min Yang, Seok-Heum Baek, Sangmo Kang
Abstract:
In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. Computational Fluid Dynamics (CFD) analysis results demonstrate the validity of this approach.
Keywords: Double-eccentric butterfly valve, CFD, Topology optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35438047 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.
Keywords: Reinforcement, silicon carbide, fly ash, red mud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7338046 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel
Authors: Pankaj Chandna, Dinesh Kumar
Abstract:
The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.
Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27688045 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14308044 Evaluating the Tool Wear Rate in Ultrasonic Machining of Titanium using Design of Experiments Approach
Authors: Jatinder Kumar, Vinod Kumar
Abstract:
Ultrasonic machining (USM) is a non-traditional machining process being widely used for commercial machining of brittle and fragile materials such as glass, ceramics and semiconductor materials. However, USM could be a viable alternative for machining a tough material such as titanium; and this aspect needs to be explored through experimental research. This investigation is focused on exploring the use of ultrasonic machining for commercial machining of pure titanium (ASTM Grade-I) and evaluation of tool wear rate (TWR) under controlled experimental conditions. The optimal settings of parameters are determined through experiments planned, conducted and analyzed using Taguchi method. In all, the paper focuses on parametric optimization of ultrasonic machining of pure titanium metal with TWR as response, and validation of the optimized value of TWR by conducting confirmatory experiments.Keywords: Ultrasonic machining, titanium, tool wear rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25088043 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.
Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17748042 Influence of Tool Geometry on Surface Roughness and Tool Wear When Turning AISI 304L Using Taguchi Optimisation Methodology
Authors: Salah Gariani, Taher Dao, Ahmed Lajili
Abstract:
This paper presents an experimental optimisation of surface roughness (Ra) and tool wear in the precision turning of AISI 304L alloy using a wiper and conventional cutting tools under wet cutting conditions. The machining trials were conducted based on Taguchi methodology employing an L9 orthogonal array design with four process parameters: feed rate, spindle speed, depth of cut, and cutting tool type. The experimental results were utilised to characterise the main factors affecting Ra and tool wear using the analyses of means (AOM) and variance (ANOVA). The results show that the wiper tools outperformed conventional tools in terms of surface quality and tool wear at optimal cutting conditions. The ANOVA results indicate that the main factors contributing to lower Ra are cutting tool type and feed rate, with percentage contribution ratios (PCRs) of 58.69% and 25.18% respectively. This confirms that tool type is the most significant factor affecting surface quality when turning AISI 304L. Additionally, a substantial reduction in tool wear was observed when a wiper insert was used, whereas noticeable increases in tool wear occurred when higher cutting speeds were employed for both tool types. These trends confirm the ANOVA outcomes that cutting speed has a significant effect on tool wear, with a PCR value of 39.22%, followed by tool type with a PCR of 27.40%. All machining trials generated similar continuous spiral or curl-shaped chips. A noticeable difference was found in the radius of the produced curl-shaped chips at different cutting speeds when turning AISI 304L under wet cutting conditions.
Keywords: AISI 304L alloy, conventional and wiper carbide tools, wet turning, average surface roughness, tool wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588041 Improving Lubrication Efficiency at High Sliding Speeds by Plasma Surface Texturing
Authors: Wei Zha, Jingzeng Zhang, Chen Zhao, Ran Cai, Xueyuan Nie
Abstract:
Cathodic plasma electrolysis (CPE) is used to create surface textures on cast iron samples for improving the tribological properties. Micro craters with confined size distribution were successfully formed by CPE process. These craters can generate extra hydrodynamic pressure that separates two sliding surfaces, increase the oil film thickness and accelerate the transition from boundary to mixed lubrication. It was found that the optimal crater size was 1.7 μm, at which the maximum lubrication efficiency was achieved. The Taguchi method was used to optimize the process parameters (voltage and roughness) for CPE surface texturing. The orthogonal array and the signal-to-noise ratio were employed to study the effect of each process parameter on the coefficient of friction. The results showed that with higher voltage and lower roughness, the lower friction coefficient can be obtained, and thus the lubrication can be more efficiently used for friction reduction.
Keywords: Cathodic plasma electrolysis, friction, lubrication, plasma surface texturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6888040 Design and Analysis of Flexible Slider Crank Mechanism
Authors: Thanh-Phong Dao, Shyh-Chour Huang
Abstract:
This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a pseudo-rigid-body model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite element analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors.
Keywords: Kinematic behavior, fatigue life, pseudo-rigid-body model, flexible slider crank mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51318039 The Effect of Randomly Distributed Polypropylene Fibers Borogypsum Fly Ash and Cement on Freezing-Thawing Durability of a Fine-Grained Soil
Authors: Ahmet Şahin Zaimoğlu
Abstract:
A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6, 12, and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20% BG, 0-20% FA, 0- 0.25% PP and 0-3% of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.Keywords: Additive materials, Freezing-thawing, Optimization, Reinforced soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17388038 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf
Abstract:
Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8058037 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21878036 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers
Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen
Abstract:
In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.
Keywords: Centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8348035 Behavior of Cu-WC-Ti Metal Composite Afterusing Planetary Ball Milling
Authors: A.T.Z. Mahamat, A.M. A Rani, Patthi Husain
Abstract:
Copper based composites reinforced with WC and Ti particles were prepared using planetary ball-mill. The experiment was designed by using Taguchi technique and milling was carried out in an air for several hours. The powder was characterized before and after milling using the SEM, TEM and X-ray for microstructure and for possible new phases. Microstructures show that milled particles size and reduction in particle size depend on many parameters. The distance d between planes of atoms estimated from X-ray powder diffraction data and TEM image. X-ray diffraction patterns of the milled powder did not show clearly any new peak or energy shift, but the TEM images show a significant change in crystalline structure of corporate on titanium in the composites.Keywords: ball milling, microstructures, titanium, tungstencarbides, X-ray
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15968034 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach
Authors: Joseph C. Chen
Abstract:
Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.
Keywords: DMAIC, machine vision system, process capability, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12548033 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.
Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154