Search results for: NP - hard problem.
3759 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part II: Optimization
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper presents modeling and optimization of two NP-hard problems in flexible manufacturing system (FMS), part type selection problem and loading problem. Due to the complexity and extent of the problems, the paper was split into two parts. The first part of the papers has discussed the modeling of the problems and showed how the real coded genetic algorithms (RCGA) can be applied to solve the problems. This second part discusses the effectiveness of the RCGA which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.
Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703758 Simulation of the Airflow Characteristic inside a Hard Disk Drive by Applying a Computational Fluid Dynamics Software
Authors: Chanchal Saha, Huynh Trung Luong, M. H. Aziz, Tharinan Rattanalert
Abstract:
Now-a-days, numbers of simulation software are being used all over the world to solve Computational Fluid Dynamics (CFD) related problems. In this present study, a commercial CFD simulation software namely STAR-CCM+ is applied to analyze the airflow characteristics inside a 2.5" hard disk drive. Each step of the software is described adequately to obtain the output and the data are verified with the theories to justify the robustness of the simulation outcome. This study gives an insight about the accuracy level of the CFD simulation software to compute CFD related problems although it largely depends upon the computer speed. Also this study will open avenues for further research.Keywords: Computational fluid dynamics, Hard disk drive, Meshing, Recirculation filter, and Filter physics parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21633757 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist Competitive Algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population-based algorithm which has achieved a great performance in comparison to other metaheuristics. This study is about developing enhanced ICA approach to solve the Cell Formation Problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: Cell formation problem, Group technology, Imperialist competitive algorithm, Sequence data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15893756 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS
Authors: Xiangbin Zhu
Abstract:
Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15793755 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition
Authors: Samia Sadouki Chibani, Abdelkamel Tari
Abstract:
Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10323754 Iterative Methods for An Inverse Problem
Authors: Minghui Wang, Shanrui Hu
Abstract:
An inverse problem of doubly center matrices is discussed. By translating the constrained problem into unconstrained problem, two iterative methods are proposed. A numerical example illustrate our algorithms.
Keywords: doubly center matrix, electric network theory, iterative methods, least-square problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14813753 A Bi-Objective Model for Location-Allocation Problem within Queuing Framework
Authors: Amirhossein Chambari, Seyed Habib Rahmaty, Vahid Hajipour, Aida Karimi
Abstract:
This paper proposes a bi-objective model for the facility location problem under a congestion system. The idea of the model is motivated by applications of locating servers in bank automated teller machines (ATMS), communication networks, and so on. This model can be specifically considered for situations in which fixed service facilities are congested by stochastic demand within queueing framework. We formulate this model with two perspectives simultaneously: (i) customers and (ii) service provider. The objectives of the model are to minimize (i) the total expected travelling and waiting time and (ii) the average facility idle-time. This model represents a mixed-integer nonlinear programming problem which belongs to the class of NP-hard problems. In addition, to solve the model, two metaheuristic algorithms including nondominated sorting genetic algorithms (NSGA-II) and non-dominated ranking genetic algorithms (NRGA) are proposed. Besides, to evaluate the performance of the two algorithms some numerical examples are produced and analyzed with some metrics to determine which algorithm works better.Keywords: Queuing, Location, Bi-objective, NSGA-II, NRGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22773752 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling
Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo
Abstract:
Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16863751 Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials
Authors: M.Davami, M.Zadshakoyan
Abstract:
Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.
Keywords: Hard-to-cut material, Hot machining, Surfaceroughness, Tool Temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22053750 Finding Pareto Optimal Front for the Multi- Mode Time, Cost Quality Trade-off in Project Scheduling
Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo
Abstract:
Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.Keywords: FastPGA, Multi-Execution Activity Mode, Pareto Optimality, Project Scheduling, Time-Cost-Quality Trade-Off.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18103749 Evolutionary Search Techniques to Solve Set Covering Problems
Authors: Darwin Gouwanda, S. G. Ponnambalam
Abstract:
Set covering problem is a classical problem in computer science and complexity theory. It has many applications, such as airline crew scheduling problem, facilities location problem, vehicle routing, assignment problem, etc. In this paper, three different techniques are applied to solve set covering problem. Firstly, a mathematical model of set covering problem is introduced and solved by using optimization solver, LINGO. Secondly, the Genetic Algorithm Toolbox available in MATLAB is used to solve set covering problem. And lastly, an ant colony optimization method is programmed in MATLAB programming language. Results obtained from these methods are presented in tables. In order to assess the performance of the techniques used in this project, the benchmark problems available in open literature are used.Keywords: Set covering problem, genetic algorithm, ant colony optimization, LINGO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36303748 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16703747 Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body
Authors: Kotaro Miura, Makoto Sakamoto, Yuji Tanabe
Abstract:
We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson’s ratio and the thickness of elastic layer.
Keywords: Indentation, contact problem, stress distribution, coating materials, layer-substrate body.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8213746 Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm
Authors: Ladan Darougaran, Hossein Shahinzadeh, Hajar Ghotb, Leila Ramezanpour
Abstract:
In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.
Keywords: Data aggregation, wireless sensor networks, energy efficiency, simulated annealing algorithm, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16843745 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10763744 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments
Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas
Abstract:
Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.
Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28463743 Optimized Delay Constrained QoS Routing
Authors: P. S. Prakash, S. Selvan
Abstract:
QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP-hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we concentrate an algorithm that finds a near-optimal solution fast and we named this algorithm as optimized Delay Constrained Routing (ODCR), which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.Keywords: QoS, Delay, Routing, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12133742 Constraint Based Frequent Pattern Mining Technique for Solving GCS Problem
Authors: First G.M. Karthik, Second Ramachandra.V.Pujeri, Dr.
Abstract:
Generalized Center String (GCS) problem are generalized from Common Approximate Substring problem and Common substring problems. GCS are known to be NP-hard allowing the problems lies in the explosion of potential candidates. Finding longest center string without concerning the sequence that may not contain any motifs is not known in advance in any particular biological gene process. GCS solved by frequent pattern-mining techniques and known to be fixed parameter tractable based on the fixed input sequence length and symbol set size. Efficient method known as Bpriori algorithms can solve GCS with reasonable time/space complexities. Bpriori 2 and Bpriori 3-2 algorithm are been proposed of any length and any positions of all their instances in input sequences. In this paper, we reduced the time/space complexity of Bpriori algorithm by Constrained Based Frequent Pattern mining (CBFP) technique which integrates the idea of Constraint Based Mining and FP-tree mining. CBFP mining technique solves the GCS problem works for all center string of any length, but also for the positions of all their mutated copies of input sequence. CBFP mining technique construct TRIE like with FP tree to represent the mutated copies of center string of any length, along with constraints to restraint growth of the consensus tree. The complexity analysis for Constrained Based FP mining technique and Bpriori algorithm is done based on the worst case and average case approach. Algorithm's correctness compared with the Bpriori algorithm using artificial data is shown.Keywords: Constraint Based Mining, FP tree, Data mining, GCS problem, CBFP mining technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17023741 Multi-objective Optimization of Graph Partitioning using Genetic Algorithm
Authors: M. Farshbaf, M. R. Feizi-Derakhshi
Abstract:
Graph partitioning is a NP-hard problem with multiple conflicting objectives. The graph partitioning should minimize the inter-partition relationship while maximizing the intra-partition relationship. Furthermore, the partition load should be evenly distributed over the respective partitions. Therefore this is a multiobjective optimization problem (MOO). One of the approaches to MOO is Pareto optimization which has been used in this paper. The proposed methods of this paper used to improve the performance are injecting best solutions of previous runs into the first generation of next runs and also storing the non-dominated set of previous generations to combine with later generation's non-dominated set. These improvements prevent the GA from getting stuck in the local optima and increase the probability of finding more optimal solutions. Finally, a simulation research is carried out to investigate the effectiveness of the proposed algorithm. The simulation results confirm the effectiveness of the proposed method.Keywords: Graph partitioning, Genetic algorithm, Multiobjective optimization, Pareto front.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19683740 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18033739 An Improved Ant Colony Algorithm for Genome Rearrangements
Authors: Essam Al Daoud
Abstract:
Genome rearrangement is an important area in computational biology and bioinformatics. The basic problem in genome rearrangements is to compute the edit distance, i.e., the minimum number of operations needed to transform one genome into another. Unfortunately, unsigned genome rearrangement problem is NP-hard. In this study an improved ant colony optimization algorithm to approximate the edit distance is proposed. The main idea is to convert the unsigned permutation to signed permutation and evaluate the ants by using Kaplan algorithm. Two new operations are added to the standard ant colony algorithm: Replacing the worst ants by re-sampling the ants from a new probability distribution and applying the crossover operations on the best ants. The proposed algorithm is tested and compared with the improved breakpoint reversal sort algorithm by using three datasets. The results indicate that the proposed algorithm achieves better accuracy ratio than the previous methods.
Keywords: Ant colony algorithm, Edit distance, Genome breakpoint, Genome rearrangement, Reversal sort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19063738 Bi-linear Complementarity Problem
Authors: Chao Wang, Ting-Zhu Huang Chen Jia
Abstract:
In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.
Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17263737 A Method for Solving a Bi-Objective Transportation Problem under Fuzzy Environment
Authors: Sukhveer Singh, Sandeep Singh
Abstract:
A bi-objective fuzzy transportation problem with the objectives to minimize the total fuzzy cost and fuzzy time of transportation without according priorities to them is considered. To the best of our knowledge, there is no method in the literature to find efficient solutions of the bi-objective transportation problem under uncertainty. In this paper, a bi-objective transportation problem in an uncertain environment has been formulated. An algorithm has been proposed to find efficient solutions of the bi-objective transportation problem under uncertainty. The proposed algorithm avoids the degeneracy and gives the optimal solution faster than other existing algorithms for the given uncertain transportation problem.
Keywords: Transportation problem, efficient solution, ranking function, fuzzy transportation problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13573736 Impact of Hard Limited Clipping Crest Factor Reduction Technique on Bit Error Rate in OFDM Based Systems
Authors: Theodore Grosch, Felipe Koji Godinho Hoshino
Abstract:
In wireless communications, 3GPP LTE is one of the solutions to meet the greater transmission data rate demand. One issue inherent to this technology is the PAPR (Peak-to-Average Power Ratio) of OFDM (Orthogonal Frequency Division Multiplexing) modulation. This high PAPR affects the efficiency of power amplifiers. One approach to mitigate this effect is the Crest Factor Reduction (CFR) technique. In this work, we simulate the impact of Hard Limited Clipping Crest Factor Reduction technique on BER (Bit Error Rate) in OFDM based Systems. In general, the results showed that CFR has more effects on higher digital modulation schemes, as expected. More importantly, we show the worst-case degradation due to CFR on QPSK, 16QAM, and 64QAM signals in a linear system. For example, hard clipping of 9 dB results in a 2 dB increase in signal to noise energy at a 1% BER for 64-QAM modulation.Keywords: Bit error rate, crest factor reduction, OFDM, physical layer simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21403735 Land Reclamation Using Waste as Fill Material: A Case Study in Jakarta
Authors: Q. Han, W. Schaefer, N. Barry
Abstract:
To coop with urbanization issues and the economic need for expansion, the city of Jakarta is planning to reclaim more land in the Jakarta Bay. However, the reclamation activities of some islands have barely started and already the developers are facing difficulties in finding sufficient quantities of sand as fill material. When addressing the problem of sand scarcity in the case of Jakarta where, an excess of waste production, an inadequate solid waste management system and a lack of dumping ground pose a major problem, it is hard not to think of the use of waste as alternative fill material. This paper analyses the possibilities of using waste in the land reclamation projects, considering the governmental, social, environmental and economic context of the city. The results identify types of waste that could be used, ways of using those types of waste and implementation conditions for the city of Jakarta.
Keywords: Waste Management systems, Land reclamation, Multi Criteria Analysis, Scenario planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53583734 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task
Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat
Abstract:
The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19433733 Networks with Unreliable Nodes and Edges: Monte Carlo Lifetime Estimation
Authors: Y. Shpungin
Abstract:
Estimating the lifetime distribution of computer networks in which nodes and links exist in time and are bound for failure is very useful in various applications. This problem is known to be NP-hard. In this paper we present efficient combinatorial approaches to Monte Carlo estimation of network lifetime distribution. We also present some simulation results.Keywords: Combinatorial spectrum, Monte Carlo, Networklifetime, Unreliable nodes and edges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18423732 Some Improvements on Kumlander-s Maximum Weight Clique Extraction Algorithm
Authors: Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, Sumio Masuda
Abstract:
Some fast exact algorithms for the maximum weight clique problem have been proposed. Östergard’s algorithm is one of them. Kumlander says his algorithm is faster than it. But we confirmed that the straightforwardly implemented Kumlander’s algorithm is slower than O¨ sterga˚rd’s algorithm. We propose some improvements on Kumlander’s algorithm.
Keywords: Maximum weight clique, exact algorithm, branch-andbound, NP-hard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18583731 Unconditionally Secure Quantum Payment System
Authors: Essam Al-Daoud
Abstract:
A potentially serious problem with current payment systems is that their underlying hard problems from number theory may be solved by either a quantum computer or unanticipated future advances in algorithms and hardware. A new quantum payment system is proposed in this paper. The suggested system makes use of fundamental principles of quantum mechanics to ensure the unconditional security without prior arrangements between customers and vendors. More specifically, the new system uses Greenberger-Home-Zeilinger (GHZ) states and Quantum Key Distribution to authenticate the vendors and guarantee the transaction integrity.
Keywords: Bell state, GHZ state, Quantum key distribution, Quantum payment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15513730 Independent Spanning Trees on Systems-on-chip Hypercubes Routing
Authors: Eduardo Sant'Ana da Silva, Andre Luiz Pires Guedes, Eduardo Todt
Abstract:
Independent spanning trees (ISTs) provide a number of advantages in data broadcasting. One can cite the use in fault tolerance network protocols for distributed computing and bandwidth. However, the problem of constructing multiple ISTs is considered hard for arbitrary graphs. In this paper we present an efficient algorithm to construct ISTs on hypercubes that requires minimum resources to be performed.
Keywords: Hypercube, Independent Spanning Trees, Networks On Chip, Systems On Chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888