Search results for: MATLAB® mapping toolbox.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 994

Search results for: MATLAB® mapping toolbox.

934 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
933 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks

Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing

Abstract:

The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.

Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
932 A Proposal for Systematic Mapping Study of Software Security Testing, Verification and Validation

Authors: Adriano Bessa Albuquerque, Francisco Jose Barreto Nunes

Abstract:

Software vulnerabilities are increasing and not only impact services and processes availability as well as information confidentiality, integrity and privacy, but also cause changes that interfere in the development process. Security test could be a solution to reduce vulnerabilities. However, the variety of test techniques with the lack of real case studies of applying tests focusing on software development life cycle compromise its effective use. This paper offers an overview of how a Systematic Mapping Study (MS) about security verification, validation and test (VVT) was performed, besides presenting general results about this study.

Keywords: Software test, software security verification validation and test, security test institutionalization, systematic mapping study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
931 Artificial Neural Networks Application to Improve Shunt Active Power Filter

Authors: Rachid.Dehini, Abdesselam.Bassou, Brahim.Ferdi

Abstract:

Active Power Filters (APFs) are today the most widely used systems to eliminate harmonics compensate power factor and correct unbalanced problems in industrial power plants. We propose to improve the performances of conventional APFs by using artificial neural networks (ANNs) for harmonics estimation. This new method combines both the strategies for extracting the three-phase reference currents for active power filters and DC link voltage control method. The ANNs learning capabilities to adaptively choose the power system parameters for both to compute the reference currents and to recharge the capacitor value requested by VDC voltage in order to ensure suitable transit of powers to supply the inverter. To investigate the performance of this identification method, the study has been accomplished using simulation with the MATLAB Simulink Power System Toolbox. The simulation study results of the new (SAPF) identification technique compared to other similar methods are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: Artificial Neural Networks (ANN), p-q theory, (SAPF), Harmonics, Total Harmonic Distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
930 Mapping Soil Fertility at Different Scales to Support Sustainable Brazilian Agriculture

Authors: Rachel Bardy Prado, Vinícius de Melo Benites, José Carlos Polidoro, Carlos Eduardo Gonçalves, Alexey Naumov

Abstract:

Most agricultural crops cultivated in Brazil are highly nutrient demanding. Brazilian soils are generally acidic with low base saturation and available nutrients. Demand for fertilizer application has increased because the national agricultural sector expansion. To improve productivity without environmental impact, there is the need for the utilization of novel procedures and techniques to optimize fertilizer application. This includes the digital soil mapping and GIS application applied to mapping in different scales. This paper is based on research, realized during 2005 to 2010 by Brazilian Corporation for Agricultural Research (EMBRAPA) and its partners. The purpose was to map soil fertility in national and regional scales. A soil profile data set in national scale (1:5,000,000) was constructed from the soil archives of Embrapa Soils, Rio de Janeiro and in the regional scale (1:250,000) from COMIGO Cooperative soil data set, Rio Verde, Brazil. The mapping was doing using ArcGIS 9.1 tools from ESRI.

Keywords: agricultural sustainability, fertilizer optimization, GIS, soil attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
929 Matlab/Simulink-Based Transient Stability Analysis Of A Sensorless Synchronous Reluctance Motor

Authors: Mostafa.A. Fellani, Daw .E. Abaid

Abstract:

This paper deals with stability analysis for synchronous reluctance motors drive. Special attention is paid to the transient performance with variations in motor's parameters such as Ld and Rs. A study of the dynamic control using d-q model is presented first in order to clarify the stability of the motor drive system. Based on the experimental parameters of the synchronous reluctance motor, this paper gives some simulation results using MATLAB/SIMULINK software packages. It is concluded that the motor parameters, especially Ld, affect the estimator stability and hence the whole drive system.

Keywords: Dynamic Simulation, MATLAB, PWM-inverter, Reluctance Machine, Sensorless Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3976
928 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa

Abstract:

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
927 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: Fuzzy logic controller, intelligent system, precision agriculture, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
926 The Impact of Self-Phase Modulation on Dispersion Compensated Mapping Multiplexing Technique (MMT)

Authors: Mohamed A. Elsherif, A. Malekmohammadi

Abstract:

An exploration in the competency of the optical multilevel Mapping Multiplexing Technique (MMT) system in tolerating to the impact of nonlinearities as Self Phase Modulation (SPM) during the presence of dispersion compensation methods. The existence of high energy pulses stimulates deterioration in the chirp compression process attained by SPM which introduces an upper power boundary limit. An evaluation of the post and asymmetric prepost fiber compensation methods have been deployed on the MMT system compared with others of the same bit rate modulation formats. The MMT 40 Gb/s post compensation system has 1.4 dB enhancements to the 40 Gb/s 4-Arysystem and less than 3.9 dB penalty compared to the 40 Gb/s OOK-RZsystem. However, the optimized Pre-Post asymmetric compensation has an enhancement of 4.6 dB compared to the Post compensation MMT configuration for a 30% pre compensation dispersion.

Keywords: Dispersion compensation, mapping multiplexing technique, self-phase modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
925 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
924 Optimization of Quantization in Higher Order Modulations for LDPC-Coded Systems

Authors: M.Sushanth Babu, P.Krishna, U.Venu, M.Ranjith

Abstract:

In this paper, we evaluate the choice of suitable quantization characteristics for both the decoder messages and the received samples in Low Density Parity Check (LDPC) coded systems using M-QAM (Quadrature Amplitude Modulation) schemes. The analysis involves the demapper block that provides initial likelihood values for the decoder, by relating its quantization strategy of the decoder. A mapping strategy refers to the grouping of bits within a codeword, where each m-bit group is used to select a 2m-ary signal in accordance with the signal labels. Further we evaluate the system with mapping strategies like Consecutive-Bit (CB) and Bit-Reliability (BR). A new demapper version, based on approximate expressions, is also presented to yield a low complexity hardware implementation.

Keywords: Low Density parity Check, Mapping, Demapping, Quantization, Quadrature Amplitude Modulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
923 Improving Cache Memory Utilization

Authors: Sami I. Serhan, Hamed M. Abdel-Haq

Abstract:

In this paper, an efficient technique is proposed to manage the cache memory. The proposed technique introduces some modifications on the well-known set associative mapping technique. This modification requires a little alteration in the structure of the cache memory and on the way by which it can be referenced. The proposed alteration leads to increase the set size virtually and consequently to improve the performance and the utilization of the cache memory. The current mapping techniques have accomplished good results. In fact, there are still different cases in which cache memory lines are left empty and not used, whereas two or more processes overwrite the lines of each other, instead of using those empty lines. The proposed algorithm aims at finding an efficient way to deal with such problem.

Keywords: Modified Set Associative Mapping, Locality of Reference, Miss Ratio, Hit Ratio, Cache Memory, Clustered Behavior, Index Address, Tag Field, Status Field, and Complement of Index Address.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
922 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
921 Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

Authors: Robert H¨ottger, Lukas Krawczyk, Burkhard Igel

Abstract:

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Keywords: Partitioning, mapping, distributed systems, scheduling, embedded multicore systems, model-based, system analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
920 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: Fuel metering unit, stepping motor, AMESim/MATLAB, full digital simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
919 A MATLAB Simulink Library for Transient Flow Simulation of Gas Networks

Authors: M. Behbahani-Nejad, A. Bagheri

Abstract:

An efficient transient flow simulation for gas pipelines and networks is presented. The proposed transient flow simulation is based on the transfer function models and MATLABSimulink. The equivalent transfer functions of the nonlinear governing equations are derived for different types of the boundary conditions. Next, a MATLAB-Simulink library is developed and proposed considering any boundary condition type. To verify the accuracy and the computational efficiency of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as TVD, method of lines, and other finite difference implicit and explicit schemes). The effects of the flow inertia and the pipeline inclination are incorporated in this simulation. It is shown that the proposed simulation has a sufficient accuracy and it is computationally more efficient than the other methods.

Keywords: Gas network, MATLAB-Simulink, transfer functions, transient flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6487
918 Refinement of Object-Z Specifications Using Morgan-s Refinement Calculus

Authors: Mehrnaz Najafi, Hassan Haghighi

Abstract:

Morgan-s refinement calculus (MRC) is one of the well-known methods allowing the formality presented in the program specification to be continued all the way to code. On the other hand, Object-Z (OZ) is an extension of Z adding support for classes and objects. There are a number of methods for obtaining code from OZ specifications that can be categorized into refinement and animation methods. As far as we know, only one refinement method exists which refines OZ specifications into code. However, this method does not have fine-grained refinement rules and thus cannot be automated. On the other hand, existing animation methods do not present mapping rules formally and do not support the mapping of several important constructs of OZ, such as all cases of operation expressions and most of constructs in global paragraph. In this paper, with the aim of providing an automatic path from OZ specifications to code, we propose an approach to map OZ specifications into their counterparts in MRC in order to use fine-grained refinement rules of MRC. In this way, having counterparts of our specifications in MRC, we can refine them into code automatically using MRC tools such as RED. Other advantages of our work pertain to proposing mapping rules formally, supporting the mapping of all important constructs of Object-Z, and considering dynamic instantiation of objects while OZ itself does not cover this facility.

Keywords: Formal method, Formal specification, Formalprogram development, Morgan's Refinement Calculus, Object-Z

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
917 Identifying Potential Partnership for Open Innovation by using Bibliographic Coupling and Keyword Vector Mapping

Authors: Inchae Park, Byungun Yoon

Abstract:

As open innovation has received increasingly attention in the management of innovation, the importance of identifying potential partnership is increasing. This paper suggests a methodology to identify the interested parties as one of Innovation intermediaries to enable open innovation with patent network. To implement the methodology, multi-stage patent citation analysis such as bibliographic coupling and information visualization method such as keyword vector mapping are utilized. This paper has contribution in that it can present meaningful collaboration keywords to identified potential partners in network since not only citation information but also patent textual information is used.

Keywords: Open innovation, partner selection, bibliographic coupling, Keyword vector mapping, patent network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
916 Mapping of C* Elements in Finite Element Method using Transformation Matrix

Authors: G. H. Majzoob, B. Sharifi Hamadani

Abstract:

Mapping between local and global coordinates is an important issue in finite element method, as all calculations are performed in local coordinates. The concern arises when subparametric are used, in which the shape functions of the field variable and the geometry of the element are not the same. This is particularly the case for C* elements in which the extra degrees of freedoms added to the nodes make the elements sub-parametric. In the present work, transformation matrix for C1* (an 8-noded hexahedron element with 12 degrees of freedom at each node) is obtained using equivalent C0 elements (with the same number of degrees of freedom). The convergence rate of 8-noded C1* element is nearly equal to its equivalent C0 element, while it consumes less CPU time with respect to the C0 element. The existence of derivative degrees of freedom at the nodes of C1* element along with excellent convergence makes it superior compared with it equivalent C0 element.

Keywords: Mapping, Finite element method, C* elements, Convergence, C0 elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149
915 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
914 Resources-Based Ontology Matching to Access Learning Resources

Authors: A. Elbyed

Abstract:

Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.

Keywords: Resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
913 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
912 M-ary Chaotic Sequence Based SLM-OFDM System for PAPR Reduction without Side-Information

Authors: A.Goel, M. Agrawal, P. Gupta Poddar

Abstract:

Selected Mapping (SLM) is a PAPR reduction technique, which converts the OFDM signal into several independent signals by multiplication with the phase sequence set and transmits one of the signals with lowest PAPR. But it requires the index of the selected signal i.e. side information (SI) to be transmitted with each OFDM symbol. The PAPR reduction capability of the SLM scheme depends on the selection of phase sequence set. In this paper, we have proposed a new phase sequence set generation scheme based on M-ary chaotic sequence and a mapping scheme to map quaternary data to concentric circle constellation (CCC) is used. It is shown that this method does not require SI and provides better SER performance with good PAPR reduction capability as compared to existing SLMOFDM methods.

Keywords: Orthogonal frequency division multiplexing (OFDM), Peak-to-average power ratio (PAPR), Selected mapping (SLM), Side information (SI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
911 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems

Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy

Abstract:

This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.

Keywords: Line congestion index, critical bus, contingency, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
910 A Robust Image Steganography Method Using PMM in Bit Plane Domain

Authors: Souvik Bhattacharyya, Aparajita Khan, Indradip Banerjee, Gautam Sanyal

Abstract:

Steganography is the art and science that hides the information in an appropriate cover carrier like image, text, audio and video media. In this work the authors propose a new image based steganographic method for hiding information within the complex bit planes of the image. After slicing into bit planes the cover image is analyzed to extract the most complex planes in decreasing order based on their bit plane complexity. The complexity function next determines the complex noisy blocks of the chosen bit plane and finally pixel mapping method (PMM) has been used to embed secret bits into those regions of the bit plane. The novel approach of using pixel mapping method (PMM) in bit plane domain adaptively embeds data on most complex regions of image, provides high embedding capacity, better imperceptibility and resistance to steganalysis attack.

Keywords: PMM (Pixel Mapping Method), Bit Plane, Steganography, SSIM, KL-Divergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2868
909 Average Switching Thresholds and Average Throughput for Adaptive Modulation using Markov Model

Authors: Essam S. Altubaishi

Abstract:

The motivation for adaptive modulation and coding is to adjust the method of transmission to ensure that the maximum efficiency is achieved over the link at all times. The receiver estimates the channel quality and reports it back to the transmitter. The transmitter then maps the reported quality into a link mode. This mapping however, is not a one-to-one mapping. In this paper we investigate a method for selecting the proper modulation scheme. This method can dynamically adapt the mapping of the Signal-to- Noise Ratio (SNR) into a link mode. It enables the use of the right modulation scheme irrespective of changes in the channel conditions by incorporating errors in the received data. We propose a Markov model for this method, and use it to derive the average switching thresholds and the average throughput. We show that the average throughput of this method outperforms the conventional threshold method.

Keywords: Adaptive modulation and coding, CDMA, Markov model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
908 A Systematic Mapping Study on Software Engineering Education

Authors: Bushra Malik, Saad Zafar

Abstract:

Inadequate curriculum for software engineering is considered to be one of the most common software risks. A number of solutions, on improving Software Engineering Education (SEE) have been reported in literature but there is a need to collectively present these solutions at one place. We have performed a mapping study to present a broad view of literature; published on improving the current state of SEE. Our aim is to give academicians, practitioners and researchers an international view of the current state of SEE. Our study has identified 70 primary studies that met our selection criteria, which we further classified and categorized in a well-defined Software Engineering educational framework. We found that the most researched category within the SE educational framework is Innovative Teaching Methods whereas the least amount of research was found in Student Learning and Assessment category. Our future work is to conduct a Systematic Literature Review on SEE.

Keywords: Mapping Study, Software Engineering, Software Engineering Education, Literature Survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3127
907 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: Artificial neural network, load estimation, regional survey, rural electrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
906 The Whale Optimization Algorithm and Its Implementation in MATLAB

Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh

Abstract:

Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.

Keywords: Optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, Implementation, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
905 To Study the Parametric Effects on Optimality of Various Feeding Sequences of a Multieffect Evaporators in Paper Industry using Mathematical Modeling and Simulation with MATLAB

Authors: Deepak Kumar, Vivek Kumar, V. P. Singh

Abstract:

This paper describes a steady state model of a multiple effect evaporator system for simulation and control purposes. The model includes overall as well as component mass balance equations, energy balance equations and heat transfer rate equations for area calculations for all the effects. Each effect in the process is represented by a number of variables which are related by the energy and material balance equations for the feed, product and vapor flow for backward, mixed and split feed. For simulation 'fsolve' solver in MATLAB source code is used. The optimality of three sequences i.e. backward, mixed and splitting feed is studied by varying the various input parameters.

Keywords: MATLAB "fsolve" solver, multiple effectevaporators, black liquor, feeding sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259