
Improving Cache Memory Utilization

Sami I. Serhan, and Hamed M. Abdel-Haq

Abstract—In this paper, an efficient technique is proposed to
manage the cache memory. The proposed technique introduces
some modifications on the well-known set associative mapping
technique. This modification requires a little alteration in the
structure of the cache memory and on the way by which it can be
referenced. The proposed alteration leads to increase the set size
virtually and consequently to improve the performance and the
utilization of the cache memory. The current mapping techniques
have accomplished good results. In fact, there are still different
cases in which cache memory lines are left empty and not used,
whereas two or more processes overwrite the lines of each other,
instead of using those empty lines. The proposed algorithm aims at
finding an efficient way to deal with such problem.

Keywords—Modified Set Associative Mapping, Locality of
Reference, Miss Ratio, Hit Ratio, Cache Memory, Clustered
Behavior, Index Address, Tag Field, Status Field, and Complement
of Index Address.

I. INTRODUCTION
cache memory is a high-speed, relatively small
memory that represents a critical point in computer

systems, since it eliminates the gab between a CPU and
main memory speed. It has an access time smaller than that
for main memory. So, the average access time is decreased
in a great deal. Every time the CPU generates a reference for
a specific word, the cache memory will be accessed to get
that word if it is there; otherwise, the main memory is
accessed to retrieve the line containing that word. Then, the
line is stored in a vacant place in the cache memory. If no
such vacant place is found in the cache memory for that line,
a replacement algorithm (such as LRU) is used to store that
line in a suitable cache memory location [14].

In fact, a cache memory is considered a good tool that
makes use of locality of reference property that states the
program references to the memory at any given interval of
time tend to be confined within a few localized areas in the
memory. In such cases, the cache memory will be
referenced more frequently without needing to return to
main memory [13].

When a cache memory is referenced to retrieve a certain
word, there will be two possibilities: a hit that means the
word is found in the cache memory or a miss if it is not
found. The efficiency of a cache memory is usually
measured using the hit ratio. A hit ratio equals to the number
of hits divided by the total number of cache references [13]
[14].

A cache memory is divided into blocks of words referred
to usually as lines. A part of the address of the requested
word (called tag) is stored together with the line. This

Authors are with Computer Science Department, University of Jordan,

Jordan.

facilitates and accelerates the process of accessing cache to
find out whether a line already exists in it or not .This
process is usually termed as cache interrogation [6]. In
addition, each line (or set) in the cache is given an identifier,
called index; the CPU address is accordingly divided into
index and tag. Tags are used to distinguish between lines
[15].

Mapping is the transformation of data from the main
memory to the cache memory. Because the cache memory is
smaller than the main memory, mapping is very important in
that transformation, and there are three types of mapping:
direct mapping, fully associative mapping and set
associative mapping [14].

In direct mapping, the number of lines in the main
memory is divided by the number of lines in the cache. The
result is that every n main memory lines will compete for
one cache line [15].

In a fully associative cache, any line in the main memory
can be found any where in the cache so no restriction exists.
Flexibility is maximized, and the cost is maximized as well,
since the number of comparators needed is equal to the
number of lines in the cache. Moreover, the miss ratio is
minimized [13].

A set associative cache is an optimal approach of both, in
which the cache is partitioned into sets. Each set contains
the same number of lines where the number of comparators
needed is equivalent to the number of lines per set. The hit
ratio is less than that the case of the fully associative
mapping, since the lines compete on sets although the line
might be found any where in its set. The line size, set size
and number of sets are cache parameters that affect the hit
ratio [14].

In some cases, some processes overwrite each others in a
cache memory when they reference addresses having the
same index addresses and different tag fields, whereas, other
sets remain idle and rarely referenced. References acting in
this manner is said to behave in a clustered manner. This
paper introduces a modification of the cache memory
structure and logical treatment to gain benefits from those
idle lines. Improving the hit ratio and reducing the memory
average access time are also focused.

II. PREVIOUS WORK
Different efforts have been carried out to improve the

cache memory efficiency and utilization. Several literature
have addressed the cache conflicts [2][11]. Agarwal and
Pudar[3] suggested column associativity for improving
direct-mapped caches. Seznec and Bodin[4] pioneered the
work on skewed-associative caches. Some works on skewed
caches are presented in some of their papers [8][9][6][12].

Mathias Spjuth, Martin Karlsson and Erik extended a
skewed cache organization with a relocation strategy [1].
They achieved a miss ratio that is comparable to the miss

A

 World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

357International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
33

.p
df

http://waset.org/publications/11933/Improving-Cache-Memory-Utilization-

ratio of an 8-way set-associative cache, while consuming up
to 48% less dynamic power. They concluded also that an
optimal selective allocation algorithms based on knowledge
about the future, can drastically increase the effectiveness of
a cache. The effectiveness is further enhanced if the
allocation candidates are temporarily held in a small staging
cache before making the allocation decision. Spjuth[7]
showed that by extending the elbow cache idea to n
relocation steps, a further reduction in the miss ratio can be
achieved.

Another research in cache modeling was done by
Ramachandran [5], who suggested an ideal cache model. He
also considered a class of caches, called random-hashed
caches. In his work he mentioned: "We shall look at
analytical tools to compute the expected conflict-miss
overhead for random-hashed caches, with respect to fully
associative LRU caches. Specifically, [5] achieved good
upper bounds on the conflict-miss overhead for random-
hashed set-associative caches". In [1] G. E. Suh, S. Devadas,
and L. Rudolph introduced an analytical cache model for
multiprocessing environments. They defined a model that
takes the miss ratio curves for each process, the time
quantum per process and the total cache size as input. The
trace driven simulation using this model provided accurate
results. Y. Yu, K. Beyls and E. D'Hollander in [10]
introduced a cache visualizer that takes some cache
snapshots and used them to study the behavior of the cache
rather than constructing a cache model. This paper aims at
improving the performance of the set associative mapping
method.

III. MODIFICATION OF THE SET ASSOCIATIVE MAPPING
ALGORITHM

The set associative mapping is an improvement over the
direct mapping organization in that each word in the cache
can store two or more words of memory under the same
index address. Each data word is stored together with its tag
and the number of tag data items in one word of cache forms
a set. A modification on the set associative mapping
algorithm is proposed in this paper to solve some problems
arise in some circumstances as discussed below.

A. The Proposed Algorithm
The proposed algorithm aims at increasing the set size

virtually, by allowing interleaving processes to make use of
empty lines in cache and not to overwrite the cache lines by
each other. Naturally, a strict mechanism should be found to
retrieve the words stored in cache using that algorithm. So, a
two-bit status field is associated with each word in the cache
memory that acts as in Table I.

TABLE I

SPECIFICATION OF STATUS FIELD

For each address generated by the CPU, the index and tag

fields are calculated. Then, if one of the words in the set that
the index address references has the same tag value as the

calculated tag and the status field equals to (01), then we
have a hit, otherwise, we take the seventh complement of
the index address represented in octal and do the previous
steps but with the status field equals to (10). If the word is
found there, then we have a hit, else we have a miss and
should bring the block that corresponds to the CPU-
generated address and check if there is an empty line (status
field = 00) in the set referenced by the index address or by
its complement. If an empty line is found, we replace it with
that block and set the status field to (01) if we use the index
address itself or (10) if we use its complement. If no empty
line is found, then a replacement algorithm is used to replace
one of the words referenced using the index address or its
complement with the block retrieved from main memory.
The proposed algorithm is shown in Fig. 1.

T : Tag
I : Index Address
L : Cache Memory Line
L.T : Tag of a Line
comp. : the complement of
LRU : Least Recently Used Replacement Algorithm

Input: a set of CPU-generated addresses, C (cache)
Output: Hit and Miss percentage
Hit = 0
Miss = 0

For each Address
 Found = 'false'
 Calculate I (index address)
 Calculate T (Tag)
 For each line in the set referenced by I (L)
 If L.T = T AND L.S=01 then
 Hit = Hit + 1
 Found = 'true'
 Exit for
 End if
 End

 If not Found then
 For each line in the set referenced by the comp. of I (L)
 If L.T = T AND L.S=10 then
 Hit = Hit + 1
 Found = 'true'
 Exit for
 End if
 End
 End if

// if the line was not found neither in normal place nor in the place
//obtained through the complement
 If not Found then
 Miss = Miss + 1
 Retrieve data from the main Memory
 Space = returnEmptySpaceIn(I)
 If space <> -1 then
 Put data in C (I), and set the Tag and status field to (01)
 Else
 Space = returnEmptySpaceIn(comp. I)
 If space <> -1 then
 Put data in C (comp. I), and set the Tag and status field to (10)
 Else
 Use the replace Algorithm (ex. LRU)
 End if
 End if
 End if
End

Fig. 1 The Modified set associative mapping algorithm

Value Meaning
00 Empty words
01 The word referenced using the index address
10 The word referenced using the complement of

the index address
11 For future use

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

358International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
33

.p
df

http://waset.org/publications/11933/Improving-Cache-Memory-Utilization-

B. An Illustrative Example
Consider a main memory with 32K words of 12 bits each.

The cache memory uses the proposed set associative
mapping organization and can store 512 sets with two words
for each set.

 In Fig. 2, a part of that cache memory is illustrated. Four
eight-word lines are brought from the main memory and
stored in that cache with the tags (22, 54, 66, and 43). Each
line is identified with its tag number (as line-tag_no.) for
discussion purposes. The generated addresses are in octal
representation.

In the initialization phase (when the computer is
restarted), the status fields are set to (00), i.e. Empty lines.
Assume that three processes, with the same index address,
started (22110, 54110, and 66110)8. Now, Notice the
following processes cache memory allocation:
• The first process generates the address (22110)8, and

looks for a line with a tag (22)8, but it finds the sets
referenced by the index address (110)8 and the sets
referenced by its seventh complement (667)8 are all
empty (note that they are four empty lines, two
referenced by the index address and two referenced by
its complement), see Fig. 2. So, it decides to bring the
line that corresponds to that address from the main
memory and puts it in the cache (as in line-22).The
status field is set to (01) because we use the index
address not its complement.

• Next, the second process generates the address (54110)8,
and performs the previous operations. It decides to put
the brought line in line-54 in the cache memory (note
that there are three empty available lines in the cache
memory referenced by the index address and its
complement).

• Then, the third process generates the address (66110)8,
but note that the sets referenced by the index address
(110)8 are reserved. Here, the importance of the
proposed algorithm appears, because the brought line
does not replace the existing lines using a replacement
algorithm, but it uses the empty sets referenced by the
complement of the index address (667)8 to store the line
(so, no miss happens). Moreover, the status field should
be set to (10) to help in retrieving it later on.

• The fourth process generates the address (43660)8, and
looks for an empty word referenced by the index
address (660)8. It finds such line, so it stores the line
brought from the main memory in that empty line, and
sets the status field to (01) because the index address is
used not its complement.

Assume that a new process is started and generates an
address with an index part equals to (110)8. At this moment,
it is known that the sets referenced by the index address and
its complement have no empty lines. So, a replacement
algorithm should be used to replace an old line with the new
one. Here, the replacement algorithm will be applied on four
lines (not on two as in the normal set associative mapping),
so the percentage of replacing a line which will be
referenced later will be reduced.

C. The Implementation Work
The object-based Visual Basic 6 programming language,

Visual Studio Enterprise Edition, was used to implement the
proposed set associative mapping algorithm. The main form
contains three tabs. The first tab has options to decide the

number of processes that is needed in the simulation
process, to determine the address space of each process in
main memory, and to find the empty spaces in it. The
second tab displays the number of processes that access the
modified set associative cache at a certain time, the block
retrieved from the main memory in miss case, the hit ratio,
the miss ratio, and graphical representation for hit and miss
case. The last tab has the same features of the previous tab
but related to the normal set associative cache.

An object-oriented approach is used in writing the code.
The simulation application contains a class for processes,
main memory, cache memory with different properties that
could be updated for each class, such as, address space,
block size, set size… etc. The code size is about 1100 lines.
The experiments were run on an IBM compatible PC,
running under windows XP professional operating system.

The system could be put in a clustering mode according to
the entered address to each process. Then, "Start
Processing" is issued and the result will appear in the next
tabs. Note that, there is a timer that allows the processing
state to be continued with switching between processes.

IV. EXPERIMENTS
The experiments are split into two parts: the first one

focuses on the cache which has a clustering behavior (in
which each process overwrites the reserved space of each
other). The second part is performed using a generated
random number of space addresses for each process to
reflect the real behavior. Here, when the processes allocate
locations in the cache memory with different indices, the hit
ratio will not be affected even if the number of processes is
changed.

A. Part One
In this part, seven processes, which have the same index

address (that is used to a reference set in the cache memory),
are used. The simulation process was done using different

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

359International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
33

.p
df

http://waset.org/publications/11933/Improving-Cache-Memory-Utilization-

numbers of those processes with different set sizes as
discussed below.

 Experiment 1:

In Fig. 3, the set size equals to one, and the simulation
is done on different numbers of processes (from 1 to 7).

Note here that the set size equals one in the normal
cache, so it is a direct mapping cache memory. Using the
proposed algorithm it appears like 2-word set-associative
normal cache, because another location, obtained by the
complement of the index address, will be used. The
average improvement in hit ratio is 2.83%.

68
70
72
74
76
78
80
82
84
86
88

Hit ratio
(%)

1 2 3 4 5 6 7

No. of processes

Normal Cache
Modified Cache

Fig. 3 The number of processes versus hit ratio. (Set size = 1)

 Experiment 2:

According to this experiment, the set size is considered
2 (i.e., each process will compete on two words using the
normal cache memory, while in the modified algorithm,
each process will compete on four words). So, the number
of misses will be decreased (see Fig. 4).

The average improvement in hit ratio here is 4.02%.
Note also that the modified cache memory with the set
size equals to one acts the same as the normal cache in
this experiment (set size equals two). This is due to the
proposed algorithm which tries to duplicate the set size of
the cache memory.

66
68
70
72
74
76
78
80
82
84
86
88

Hit ratio
(%)

1 2 3 4 5 6 7

No. of processes

Normal Cache
Modified Cache

Fig. 4 The number of processes versus hit ratio. (Set size = 2)

 Experiment 3:

Finally, in this experiment, the cache set size is
considered with 3 words. The efficiency on the modified
cache memory didn't decrease despite of the increment of
processes in clustering behavior up to six processes as
shown in Fig. 5. This is because the set size here is 3 and
it appears as if it is of a size equals six (virtually
duplicated) in the proposed approach. The average
improvement in hit ratio is 4.62%

Fig. 5 The number of processes versus hit ratio. (Set size = 3)

B. Part Two
This part contains three experiments with different set

sizes and the same number of processes.

Experiment 4:
This experiment uses three processes with randomly

chosen address spaces and the experiment is done on
different set sizes as shown in Fig. 6. The average
improvement in hit the ratio is 3.03%.

68
70
72
74
76
78
80
82
84
86
88

Hit ratio
(%)

1 2 3

set size

Normal Cache
Modified Cache

Fig. 6 Set size versus hit ratio. (Number of processes = 3)

Experiment 5:
In Fig. 7, four processes with random address spaces are

chosen with different set sizes. The average improvement in
the hit ratio is 3.56%.

72
74
76
78
80
82
84
86
88

Hit ratio
(%)

1 2 3

set size

Normal Cache
Modified Cache

Fig. 7 Set size versus hit ratio. (Number of processes = 4)

 Experiment 6:

In this experiment, five processes with different address
spaces running on different set sizes (see Fig. 8). The
average improvement in the hit ratio is 1.45%

68
70
72
74
76
78
80
82
84
86
88

Hit ratio
(%)

1 2 3 4 5 6 7

No. of processes

Normal Cache
Modified Cache

 World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

360International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
33

.p
df

http://waset.org/publications/11933/Improving-Cache-Memory-Utilization-

79
80
81
82
83
84
85
86
87
88

hit ratio (%)

1 2 3

set size

Normal Cache
Modified Cache

Fig. 8 Set size versus hit ratio. (Number of processes =5)

V. EXPERIMENTS FOR SPECIAL CASES
Experiments were done on the following two special

cases:
• The first experiment represents a special case in which

the CPU switches among processes quickly, due to
the excessive number of I/O interrupts. So, the
number of applying the replacement algorithm is
increased, and the miss ratio is high if the set size is
not large enough. Here, the proposed algorithm
expanded the set size virtually. So, the quick
switching among processes did not affect the hit ratio.
The normal set associative mapping became
inefficient because of that case. The average
improvement in the hit ratio is 33.15%

0
10
20
30
40
50
60
70
80
90

hit ratio (%)

1 2 3 4 5 6 7

number of processes

Normal Cache
Modified Cache

Fig. 9 Number of processes versus hit ratio. (Set size = 2)

• The second experiment illustrates the effect of the

proposed set associative mapping algorithm on the
repetitive programming structures, in which several
instructions are executed many times (implemented
using jump instructions). Imagine the case in which
two or more processes with address spaces having
relatively the same index address. If they are allowed
to be executed simultaneously (and that is possible)
using the normal set associative mapping, the
overhead resulting from replacing the lines of each
other will be huge. So, using the proposed algorithm,
each process will work on separate lines in the cache
memory and that will avoid the clustering behavior.
As shown in Fig. 10, four tests have been
accomplished using different numbers of processes
with the same set size (set size equals two). Each of
the used processes has a repetitive structure with the
same index address. The average improvement in the
hit ratio is 4.175%.

70
72
74
76
78
80
82
84
86
88

hit ratio (%)

1 2 3 4

number of processes

Normal Cache
Modified Cache

Fig. 19 Number of processes versus hit ratio in repetitive structure.

(Set size = 2)

By observing the above graphs, you can see that the hit
ratio values in part two are different than in part one for the
same set size and the same number of processes. This is
because the address space in part one was selected to reflect
the interleaving behavior of processes, while in part two it
was selected randomly.

VI. CONCLUSION
In this paper, a modification on a set associative mapping

algorithm was proposed. It tries to duplicate the set size of
the cache memory indirectly or virtually. In other words,
instead of leaving the sets referenced by the complement of
the index address empty and not used, we could consider
them as parts of the sets referenced by the index address
itself. It is right that we couldn't guarantee that we will find
the other side set (set referenced by the complement of
index address) empty. But we could guarantee that the
possibility of replacing a block that will be used in the next
time will be decreased because the number of words that
will be put under the replacement algorithm will be
duplicated. It also prevents interleaving processes from
overwriting each other, but it makes use of empty lines in
the cache memory. Space utilization has been improved,
since the cache memory size is not increased physically by
considering some empty lines of the cache memory as a part
of the referenced set. The proposed modified algorithm has
improved the hit ratio by a value up to 10 % in average.

REFERENCES
[1] Mathias Spjuth, Martin Karlsson and Erik, "Cache Memory Design

Trade-offs for Current and Emerging Workloads". Licentiate Thesis
2003-009, Department of Information Technology, Uppsala
University, September 2003.

[2] M.D. Hill. "Aspects of cache Memory and Instruction Buffer
Performance",A PhD thesis presented to the University of California,
Berkeley 1987.

[3] A. Agarwal and S.D. Puadar, "Column-Associative Caches: A
Technique for Reducing the Miss Ratio of Direct-Mapped Caches", In
Proceedings of the 20th International Symposium on Computer
Architecture, UK, pages 179-190, May 1993.

[4] A.Seznec and F. Bodin, "Skewed-associative caches", In Proceedings
of PARLE '93, Munich, pages 305-316, June 1993.

[5] Ramachandran S.1999, An algorithmic theory of caches
http://216.239.51.100/search?q=cache:KmPHLKLvJlkC:supertech.lcs
.mit.edu/~sridhar/thesis.ps+%22cache+model%22&hl=en&ie=UTF-
8.

[6] A.Seznec, "A New Case for Skewed-Associativity", A technical
Report No. 1114, IRISA-INRIA, Campus de Beaulieu, July 1997.

[7] M. Spjuth, "Refinement and Evaluation of the Elbow Cache",
Master's thesis, School of Engineering, Uppsala University, Sweden,
April 2002.

[8] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese, "Piranha: A scalable

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

361International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
33

.p
df

http://waset.org/publications/11933/Improving-Cache-Memory-Utilization-

Architecture Based on Single-Chip Multiprocessing", In Proceeding
of the 27th Annual ISCA, USA, pages 149-160, 2000.

[9] A. Seznec, "A Case for Two-way Skewed Associative Caches", In
Proceedings of the 20th International Symposium on Computer
Architecture, USA , pages 169-178, May 1993.

[10] Yu Y. , K. Beyls and E. H. D'Hollander , "Visualizing the Impact of
the Cache on Program Execution",
http://citeseer.nj.nec.com/502364.html, 2001.

[11] Nagel P. Topham and Antoio GonZalez, "Randomized Cache
Placement for Eliminating Conflicts", IEEE Transactions on
Computers, Vol. 48, No.2, pages 185-192, 1999.

[12] Hans Vandierendonck and Koen De Bosschere, "Trade-offs for
Skewed- Associative Caches", Proceedings of the International
Conference in Parallel Computing (PARCO), Germany, pages 467-
474, September 2003.

[13] William Stallings, Computer Organization and Architecture, seventh
edition, Prentice Hall, 2006.

[14] Barry Wilkinson, Computer Architecture, second edition, Prentice
Hall, 1996.

[15] Linda Null and Julia Lobur, The essentials of Computer Organization
and Architecture, second edition, Jones and Bartlett, 2006.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:2, 2007

362International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

2,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

19
33

.p
df

http://waset.org/publications/11933/Improving-Cache-Memory-Utilization-

