
 

 

  

 

Abstract—Morgan’s refinement calculus (MRC) is one of the 

well-known methods allowing the formality presented in the program 

specification to be continued all the way to code. On the other hand, 

Object-Z (OZ) is an extension of Z adding support for classes and 

objects. There are a number of methods for obtaining code from OZ 

specifications that can be categorized into refinement and animation 

methods. As far as we know, only one refinement method exists 

which refines OZ specifications into code. However, this method 

does not have fine-grained refinement rules and thus cannot be 

automated. On the other hand, existing animation methods do not 

present mapping rules formally and do not support the mapping of 

several important constructs of OZ, such as all cases of operation 

expressions and most of constructs in global paragraph. In this paper, 

with the aim of providing an automatic path from OZ specifications 

to code, we propose an approach to map OZ specifications into their 

counterparts in MRC in order to use fine-grained refinement rules of 

MRC. In this way, having counterparts of our specifications in MRC, 

we can refine them into code automatically using MRC tools such as 

RED. Other advantages of our work pertain to proposing mapping 

rules formally, supporting the mapping of all important constructs of 

Object-Z, and considering dynamic instantiation of objects while OZ 

itself does not cover this facility. 

 

Keywords—Formal method, Formal specification, Formal 

program development, Morgan’s Refinement Calculus, Object-Z 

I. INTRODUCTION 

UILDING a reliable system is one of the main challenges 

when developing large, complex software systems [1]. 

Formal methods which refers to mathematically rigorous 

techniques and tools for the specification, design and 

verification of software systems, have offered a logical 

solution to the problem of software reliability [1, 2]. 

Every formal method requires a soundly based specification 

language. The popularity of the object-oriented programming 

approach has led to the adoption of a similar method for 

expressing encapsulation and reuse concepts in formal 

specifications [3]. Object-Z [4, 5] is a Z-based notation which 

provides specific constructs to facilitate specification in an 

object-oriented style [2].  

Many contributions [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14] 

have been so far proposed for developing programs from OZ 

specifications that can be categorized to animation [1, 2, 3, 6, 

7, 8, 9, 10, 11, 12] and refinement [13, 14] methods. 
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Rafsanjani and Colwill [6] described some basic rules for 

structural mapping from Object-Z to C
++

, but these rules do 

not cover some specification constructs of Object-Z, such as 

precondition, postcondition, class invariants, visibility list, 

operation operators and some types of definitions like class 

variables and generic parameters. In [7], Fukagawa et al. has 

augmented the work of [4] by presenting two new rules that 

consider constructor for types of constants and template class 

for generic parameters.  

In [8] it has been given another method to animate OZ by 

C
++

 which covers precondition, postcondition, class invariants, 

visibility list, some types of definitions like free types and 

class variables; however, it does not consider axiomatic 

definitions and multiple inheritance. Also, for a subset of 

operation operators including conjunction, negation, choice 

and parallel composition, rules are not proposed explicitly. In 

[9], we proposed an animation approach to develop C
++

 code 

from Object-Z specifications which considers several Object-

Z concepts whose mappings have not been proposed in none 

of the previous works. For example, animation rules for all 

types of definitions like class union, axiomatic definitions and 

all of operation operators are proposed in [9].  

In [3], a methodology for animating the Object-Z 

specification language using a Z animation environment is 

presented. The focus of this work is to model in Z a 

framework to manage the dynamic instantiation of objects and 

object references. Also, some other works exist in the 

literature which animates Object-Z specifications by other 

object-oriented programming languages, such as java [1, 10, 

11], Eiffle [12], and Spec# [2]. Nevertheless, none of the 

mentioned animation methods did not pay attention to 

correctness, their mapping rules did not cover some important 

constructs of OZ such as all cases of operation expressions 

and also, they did not propose mapping rules formally which 

can help to prove the correctness of mapping.  

On the other hand, Derrick and Boiten [13, 14] proposed a 

refinement approach in Object-Z which considers a correct 

refinement of a class schema to another class schema. 

However, fine-grained refinement rules, such as refinement at 

the operation schema level, are needed to do the refinement 

from design to code.  

We use [3] to propose a methodology for refinement of OZ 

specifications using MRC. The main contribution of this 

methodology is to give an automatic path from OZ 

specifications to code. Our approach is to propose a translation 

function which maps OZ constructs to their MRC counterparts 

according to OZ concrete syntax [4], MRC abstract syntax 

which we define later, and also a framework in MRC in order 
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to manage object references. Other contributions of our 

methodology are the ability to use fine-grained refinement 

rules, the introduction of dynamic instantiation of objects 

while OZ itself does not cover this facility, proposing 

translation rules formally and supporting mapping of 

important constructs, such as abbreviations in global 

paragraph while none of the related methods in the literature 

have not supported the animation\refinement of this construct.  

The paper is organized in the following way. In section 2, 

the preliminaries of this work are reviewed by focusing on OZ 

concepts and constructs. In section 3, we provide the abstract 

syntaxes of those parts of both OZ and MRC in which we are 

concerned. Section 4 presents our methodology translating OZ 

constructs into their counterparts in MRC. Section 5 includes a 

case study showing the applicability and usefulness of our 

approach. Finally, the last section is devoted to the conclusion 

and some directions for future work. 

II. PRELIMINARIES 

To mention the preliminaries of this paper, we first review 

the work of McComb and Smith who proposed a method of 

animating OZ which considers reference semantics and uses 

an existing Z animator in a way that is both automatable and 

transparent to the user [3]. In order to introduce concept 

“object” in Z, McComb and Smith modelled object identity 

with a free type whose name is _identity as follows: 

_identity::= _null | _REF <<ℕ>> 

The constructor “_REF” allows us to associate a unique 

object identity with each natural number being irrespective to 

the class the object belongs to. Value “_null” allows us to 

ignore parts of a specification for the purposes of animation. It 

acts as a placeholder for the reference to an object which has 

not been instantiated in the animation environment. 

Also, they considered an additional constant self to cater OZ 

notion of self reference; see [3] for more details. Also, they 

modelled in Z a framework to manage the dynamic 

instantiation of objects. The mentioned framework comprises 

an explicit reference table, i.e., finite mappings, where object 

identities are mapped to instances of a schema describing the 

state of each class (i.e., they modelled the state of class 

schema by schema in Z), and also, a schema whose name is 

_ClassName_new and is declared in order to model dynamic 

instantiation of objects operation; see [3] for more details. 

Finally, all operations of OZ specifications are transformed to 

Z operations based on the mentioned reference table. 

As another preliminary of our work, we now review OZ 

concepts. In the following we show what appear in global 

paragraphs of OZ [4]: 

Paragraph::= BasicTypeDefinition 

     | AxiomaticDefinition 

     | GenericDefinition 

     | AbbreviationDefinition 

     | FreeTypeDefinition 

     | Schema 

     | Class 

     | Predicate 

Considering the above syntax, concepts of OZ which we 

cover in our methodology are [4, 5]: 

Basic Type Definition: introduces one or more basic types by 

the inclusion of their names in a square-bracketed, comma-

separated list. 

Abbreviation Definition: introduces a type whose name is 

the identifier on the left-hand side of the definition and whose 

values are those of the expression on the right-hand side. 

Free Type Definition: introduces a type whose name is the 

identifier on the left-hand side of the expression and whose 

values are given by the branches of the right-hand side of the 

definition. 

Class: the major new construct in Object-Z is the class 

schema which captures the object-oriented notion of a class by 

encapsulating a single state schema, and its associated initial 

state schema, with all the operation schemas of the given state. 

The structure of the class schema specification in Object-Z 

is shown below [4]: 

                ClassName [FormalParameters] 

  VisibilityList 

      InheritedClass(es)  

   LocalDefinition(s) 

   State 

   InitialState 

   Operations 

 

Considering the above syntax, concepts which we use in our 

methodology are [4, 5]:  

Visibility list: lists those features that are visible to the 

environment of an object of the class. In class schema 

“Queue” [4], shown in Fig. 1, count, INIT, Join and Leave are 

visible features. 

Inheritance: when a class is inherited by another class in 

Object-Z, its definitions, i.e., state and initial state schemas 

and operations, are merged with those of the inheriting class. 

State schema: is a nameless box with optional declaration and 

predicate parts. The predicate of a state schema is called the 

class invariants. Variables which are defined in the declaration 

part of the state schema are called state variables. In class 

schema “Queue”, items and count are state variables, and this 

class schema does not have any invariants. State variables are 

categorized to: 

1. Primary variables: may only be changed by an 

operation in which they are declared. In class schema 

“Queue”, items and count are primary variables. 

2. Secondary variables: may be changed by any 

operation. 

Initial State: defines the initial states of a class, and its name is 

INIT. In class schema “Queue”, items=<> and count=0 are 

predicates of its initial state schema. 

Operations: defines the permissible changes in the state that 

an object of the class may undergo. In class schema “Queue”, 

two operations Join and Leave are defined. Related concepts 

are: 

1. Operation schema: is a named box which may 

consist of a ∆-list, a declaration and a predicate part. 

∆-list consists of primary variables that the operation 
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may change when applied to an object of the class. 

The declaration part is for auxiliary variables needed 

to define the operation. They are generally input and 

output variables. The predicate part relates the 

possible states before the operation execution to the 

possible states after its execution. Class schema 

“Queue” has two operation schemas which are Join 

and Leave. 

2. Operation expression: includes operation schema 

definitions and operation promotions defined later. 

An operation expression may be also an identifier 

with an optional rename list enabling previously 

defined operations to be modified or combined. 

3. Operation operators: Object-Z has the following 

operation operators used to modify and combine 

operation expressions: 

• Conjunction (∧): used to model the 

simultaneous occurrence of two operations. 

• Parallel composition (|| or ||!): used to model 

communication between simultaneously 

occurring operations in both directions. 

• Choice (▯): used to model the occurrence of 

an applicable operation among two 

operations. If both operations are applicable, 

then this operator selects one of them 

nondeterministically. 

• Sequential composition (;): used to model 

two operations occurring in sequence. It also 

allows the communication between the 

operations, but the communication is only 

possible in one direction. 

 Queue    

↾(count, INIT, Join, Leave) 

  items: seq ℕ 

  count: ℕ 

 

  INIT 

  items =<> 

  count=0 

  Join  

  ∆(items, count) 

  item?:ℕ 

 

  items´=items◠<item?> 

  count´=count + 1 

  Leave 

  ∆(items) 

  item!:ℕ 

 

  items=<item!>◠items´ 

 

Fig. 1 Class schema Queue 

 

Other important concepts in Object-Z are [4, 5]: 

o Operation promotion: any class can have 

operations which model the application of 

operations to objects whose identities are declared 

as global constants. Such operations are said to 

promote the operations of the objects to operations 

of the class. An operation promotion is defined 

using the dot notation a.Op, where a is an 

expression which evaluates to the identity of the 

referenced object, and Op is the name of a visible 

operation of the related class. 

o Attribute promotion: visible attributes of an object 

may be promoted to any scope in which the 

identity of that object may be referenced. 

III. ABSTRACT SYNTAXES OF OZ AND MRC 

In this section we provide the abstract syntaxes of those 

parts of both OZ and MRC, in BNF notation, in which we are 

concerned. 

A. Abstract Syntax of Object-Z 

For a complete account of the concrete syntax of Object-Z 

see [4]. We are only interested in those parts used in our 

mapping. 

Abstract syntax of Object-Z: 

 

1) Specification 

Specification ::= Paragraph 
       .        .        . 
          Paragraph 

 

2) Global Paragraphs 

We proposed the abstract syntaxes of global paragraphs and 

class in section 2. By considering the abstract syntax of global 

paragraphs or paragraph, abstract syntaxes of 

BasicTypeDefinition, AbbreviationDefinition and 

FreeTypeDefinition are as follows: 

BasicTypeDefinition ::= [Identifier, …, Identifier] 
 

AbbreviationDefinition ::= Abbreviation == Expression 

Abbreviation ::= VariableName [FormalParameters] 

           | PrefixGenericName Identifier 

          | Identifier InfixGenericName Identifier 
 

FreeTypeDefinition ::= Identifier::= Branch|…|Branch 

Branch ::= Identifier 

      | VariableName <<Expression>> 

 

3) Class Paragraphs 

Visibilitylist ::= ↾(DeclarationNameList) 

 

InheritedClass ::= ClassName[ActualParameters] 

 [RenameList] 
 

State ::= [Declaration [∆ Declaration][|Predicate]] 

     | [∆ Declaration [|Predicate]] 

     | [Predicate] 
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InitialState ::= INIT ≙ [Predicate] 
 

Operation ::=           OperationName 

      DeltaList 

      [Declaration] 

       

      [PredicateList] 

 

OperationName ≙ OperationExpression 

 

4) Operation Expressions 

OperationExpression ::= [Declaration [|Predicate]] 

      | [[Predicate]] 

         | [DeltaList[Declaration][|Predicate]] 

      | OperationExpression∧OperationExpression 

      | OperationExpression||OperationExpression 

      | OperationExpression[]OperationExpression 

      | OperationExpression;OperationExpression 

      | Expression.Identifier 

 

B. Abstract Syntax of Morgan’s Refinement Calculus 

We could not find the official concrete syntax of the MRC 

in the literature. Taking our inspiration from [15], we built 

part of an abstract syntax of MRC which is needed for our 

methodology as follows: 

 

Specification ::= ModuleSt 

                            | TypeSt 

          | BasicTypeSt 
 

ModuleSt ::= module Name 

                          [export NameList] 

                          [import NameList] 

                          [var VarListType] 

                          [and Pred] 

                          [ procedure 
                          . 
                          . 
                   . 
                          procedure] 

                          initially Pred 

                       end       
      

TypeSt ::= type Name ≙ Type_expression 
 

BasicTypeSt ::= [Identifier, …, Identifier] 
 

procedure Name [(ParamList)] ≙ SpecSt 
 

 

SpecSt  ::= Frame [PreCondition, PostCondition] 

                  | SpecSt ; SpecSt 

                  | ProcCall ; SpecSt 

                  | SpecSt ; ProcCall 

                  | ProcCall 
 

ProcCall ::= ProcName [(VarList)] 
 

ParamList ::= value VarDecl, ParamList 

                       | result VarDecl, ParamList 

                       | value result VarDecl, ParamList 

                       | reference VarDecl, ParamList 

PreConcition::= Pred 

PostCondition::=Pred 

Frame::= : 

     |VarList: 

 

IV. OUR REFINEMENT METHODOLOGY 

For modelling the concept “object” in MRC, we consider a 

module whose name is object. Also, a new free type whose 

name is identity will be considered for modelling referential 

semantics as follows; for more details about this free type see 

[3] (this free type is similar to _identity in [3] which REF and 

null have the same functionalities as _REF and _null in 

_identity). 

type identity ::= REF ℕ | null 

 

Now we define a translation function [| |]
T
 which translates 

each part of OZ abstract syntax into its counterpart in MRC 

abstract syntax. 

Definition 1: Translation Function [| |]
 T

: 

[| |]
T
: OZ→MRC is a function from OZ to MRC which is 

explained in detail as follows: 

 

A. Mapping of Global Paragraphs 

Basic Type Definition: the same notion of basic type exists 

in MRC. Thus, the translation for basic types is as follows: 

[| BasicTypeDefinition |]
T
 = [| Identifier, …, Identifier |]

T
= 

[| Identifier, …, Identifier |]
T 

 

Abbreviation Definition: We consider mapping of abbreviation 

definition in a case in which the right side of the abbreviation 

is in the form of computational expression and none of its 

expression elements is numeric, as follows: 

[| Abbreviation = = Expression |]
T
 = type Abbreviation = [| 

Expression |]
 T

 (which separates each operation expression 

element with ‘|’) 

 

Free Types: we propose the translation for free type definition 

when all of its branches are identifier, as follows: 
[| Identifier ::= Branch0|…|Branchn |]

T
= type Identifier = [| 

Branch0|]
T
|…| [|Branchn|]

T
 

 

Class: [| class schema (whose name is ClassName) |]
 T

 = 

module ClassName . . . end 

B. Mapping of Class Paragraphs 

Visibility list: we consider each declaration name in 

visibility list which is an operation name as an export name 

list. If class schema is a parent class schema, we must export 

all of its operations because a child class schema must inherit 

all of the operations of its parent class schema. Note that we 

do not export a declaration name which is not an operation 

name. This is due to the manner by which the mapping of state 

schema declarations will be proposed. So, the translation for 

this concept is as follows: 
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[| VisibilityList |]
T 

= export DeclarationName which is an 

operation name and is not INIT. 

Inherited class: MRC does not have any direct 

corresponding concept for mapping of inheritance. An 

acceptable solution could be to use the “uses” relation. In this 

way, we must import all procedures of those module(s) 

corresponding to parent class(es) because a child class schema 

can use all of the operations of its parent class schema. 

State: we consider a new type whose name is 

ClassName_state and is in the form of set comprehension. Set 

declaration consists of mapping of  

� state declaration,  

� inherited class (es) state declaration,  

� a Boolean variable (Note that we must define type 

Boolean using type expression earlier),  

� Init which will be used to accommodate the predicate 

a.INIT for an object a that will be evaluated as true 

precisely when that object is in its initial state,  

� and a variable self in order to cater for OZ notion of 

self reference.  

Set property consists of mapping of  

� state predicate list,  

� inherited class (es) state predicate list,  

� and also a state invariant that is introduced to force 

the Init variable to be always equivalent to the 

predicate lists in initial state schema of class schema 

and its inherited class (es) schemas.  

 

The translation of state is thus as follows: 
 

type B ≙ False|True  
 

[|State|]
T
 = type ClassName_state ≙ 

{[|State.Declaration|]
T
, Init: B, self: identity, 

[|inheritedClass0.State.Declaration|]
T
 ,…,   

[| inheritedClassm.State.Declaration|]
T
,  

 

|[|State.predicateList|]
T
 ∧ 

[|inheritedClass0.State.predicateList|]
T∧ … ∧   

[| inheritedClassm.State.predicateList |]
T
 ∧ Init ⇔

([|InitialState.predicateList|]
T
 ∧ 

[|inheritedClass0.InitialState.predicateList|]
T∧ … ∧ 

[|inheritedClassm.InitialState.predicateList |]
T
 )} 

 

For modeling the concept “object”, we consider a variable 

in each module which is obtained through the mapping of 

class schema; the variable name is ClassName_reftab which 

holds objects of corresponding class schema (i.e., ClassName). 

This variable maps each object identity to its associated 

ClassName_state as follows: 

ClassName_reftab: identity  ClassName_state 

Also, we consider a type whose name is State_Object which 

comprises reference tables (i.e., ClassName_reftab) of each 

class schema in the specification and a variable whose name is 

state with type State_Object in module object. The aim of 

declaring State_Object is to ensure that each identity is 

assigned to a unique object, and null is not mapped to any 

object. Declaration of this type is as follows: 

type State_Object 

{ClassName0_reftab:identityClassName0_state, …, 

 ClassNamen_reftab: identity  ClassNamen_state  | 

� ��� ClassName�_reftab �  Ø�
���  ∧ 

� ��� ClassName�_reftab�
��� ⊆ ran REF } 

 

Initial State: the mapping of initial state has been already 

considered in definition of ClassName_state.  

 

Operation Schema: we map each operation schema to a 

procedure in the related module (i.e., that module obtained 

from the mapping of class schema which includes the 

mentioned operation schema). The procedure name is 

ClassName_OperationSchemaName. We propose its parts 

according to the abstract syntax of procedure in MRC 

presented in section 3. The parameters list of the procedure 

consists of an index with type identity which is the object 

identity that the procedure should be applied to; indexes for 

other objects which exist in ClassName and their operations 

are promoted in ClassName using type identity and the 

mapping of operation schema declaration, respectively. The 

procedure frame consists of ClassName_reftab and all of those 

operation schema declaration elements which are outputs. 

Also, its pre part (according to the abstract syntax of 

procedure in MRC) will be obtained by using the definition of 

getting precondition from postcondition, i.e., ∃ State´. 

Operation\output and its post part is predicateList itself (see 

the concrete syntax of operation schema in section 3). 

[| Operation Schema |]
T
 = procedure 

ClassName_OperationSchemaName (value 

ClassName_index: identity, [| Declaration |]
 T

) ≙ 

ClassName_reftab, DeclarationName which is in 

Declaration and is in the form of output: [ [|∃ State′. 

Operation\declarations which are outputs |]
 T

, [| 

predicateList|]
 T

] 

 

C. Mapping of Operation Expressions 

Mapping of all cases of operation expressions are as 

follows: 

 

1) [DeltaList[Declaration][|Predicate]] 

We map this case to specification statement “w: [pre, post]” 

whose frame, i.e., w, is ClassName_reftab along with the 

output part of declaration. Also, its pre will be obtained by 

using the definition of getting precondition from Predicate, 

and its post is Predicate itself. Thus, the translation of this 

case is as follows: 

[| [DeltaList [Declaration] [|Predicate] |]
 T

 = 

ClassName_reftab, Declarations which are outputs: [ [| 

∃State´. [DeltaList [Declaration] [|Predicate]]\ 

Declarations which are outputs|]
 T

, [|Predicate|]
 T

] 
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2) [Declaration[|Predicate]] 

This operation expression is a special case of the above one. 

Thus, its translation is similar to item 1: 

[| [DeltaList [|Predicate] |]
 T

 = ClassName_reftab: [ [| 

∃State´. [DeltaList [|Predicate]] |]
 T

, [|Predicate|]
 T

] 

 

3)  [[Predicate]] 

Similarly, this operation expression is a special case of item 

1 above and thus its translation is as follows: 

[|Predicate|]
T
= ClassName_reftab: 

[ ∃State´. [[|Predicate]] |]
 T

, [|Predicate|]
 T

] 

 

For the following operation expressions, we consider a 

procedure whose name is ClassName_OperationName, and its 

parameters list consists of a variable whose name is 

ClassName_index with type identity and also those variables 

obtained from merging inputs and outputs of all operation 

expressions except parallel composition (hidden variables 

must be omitted from parameters list).  

 

4) OperationExpression1∧OperationExpression2 

We consider two cases for proposing translation function of 

this operation expression as follows: 

• If neither of the operation expressions are in the form 

of promotion, and also the mapping of both of them 

are in the form of specification statements “w: [pre, 

post]” (we consider the left side of the conjunction as 

w1: [Q1, P1] and the right side as w2: [Q2, P2]), we use 

the conjunction notion in MRC for conjoining these 

two specification statements. Also, merging the 

variables of frames of the mentioned two 

specification statements are necessary. The 

translation function for this case is as follows (note 

that we use existential quantifier in pre because, in 

the beginning, both of Q1 and Q2 must be satisfied: 

Q1 is satisfied for w1 and it must be satisfied for at 

least one w2, too. A similar concern should be 

considered for Q2): 

[|OperationExpression1 ∧ OperationExpression2 |]
T
    

= [| [|OperationExpression1|]
T
 ∧  

[|OperationExpression2|]
 T

 |]
 T 

= [| w1: [Q1, P1] ∧ w2: [Q2, P2] |]
 T

  

= merge(w1, w2): [(∃ w2. Q1) ∧ (∃w1.Q2), P1∧P2] 
 

• If both of the operation expressions are in the form of 

promotion, then we translate the conjunction to 

sequential composition as follows: 

               [|OperationExpression1 ∧ OperationExpression2 |]
T
 = 

            [|OperationExpression1|]
 T

; [|OperationExpression2|]
 T 

 

5) OperationExpression1 || OperationExpression2 

We consider two cases for proposing translation function of 

this operation expression as follows: 

• If neither of the operation expressions are in the form 

of promotion, and also the mapping of both of them 

are in the form of specification statement “w: [pre, 

post]” (we consider the left side of the conjunction as 

w1: [Q1, P1] and the right side as w2: [Q2, P2]), by 

considering the semantics of this version of parallel 

composition, we should hide those variables (i.e., 

communicating variables) which are inputs in one of 

the operation expressions and outputs in the other one 

and then equate corresponding variables; hence, we 

use the notion of renaming to equate these variables, 

hiding them in precondition and postcondition and 

subtracting them from frame variables. Below, inputs 

returns the set of input variables of an OZ operation, 

and outputs returns the set of output variables. The 

translation function is as follows: 

[| OperationExpression1 || OperationExpression2 |]
T
    

= [| [|OperationExpression1|]
T
 ||   

[|OperationExpression2|]
 T

 |]
 T  

= [| w1: [Q1, P1] || w2: [Q2, P2] |]
 T 

= (w1, w2) ₋ ({x1, … , xn} ∪ {y1, … , ym}) :  

[∃z1, …, zn+m ∙  

(∃ w2. Q1[z1\x1, …, zn\xn,  zn+1\y1,…, zn+m\ym]) ∧   

(∃w1.Q2[z1\x1, …, zn\xn, zn+1\y1, …, zn+m\ym]),  

∃z1, …, zn+m ∙  

(P1 [z1\x1, …, zn\xn,  zn+1\y1,…, zn+m\ym] ∧  

P2[z1\x1, …, zn\xn, zn+1\y1, …, zn+m\ym])]  

 

Where {y1, …, ym} = inputs (op2) ∩ outputs (op1), 

and {x1, …, xn} = inputs (op1) ∩ outputs (op2). 

 

• If both of the operation expressions are in the form of 

promotion, the translation is done similar to what we 

did for case 2 of conjunction. 
 

6) OperationExpression1 [] OperationExpression2 

We consider two cases for proposing translation function of 

this operation expression as follows: 

• If neither of the operation expressions are in the form 

of promotion, and also the mapping of both of them 

are in the form of specification statement “w: [pre, 

post]” (we consider the left side of the conjunction as 

w1: [Q1, P1] and the right side as w2: [Q2, P2]), we use 

choose to simulate the nondeterminism selection 

between operation expressions. Thus, selecting the 

operation expression which must be executed will be 

done based on value r (see follows; note that 

parameter p that, generally speaking, shows the 

possibility of choosing of operation expressions must 

be determined). The translation function is as 

follows: 

             [|OperationExpression1 [] OperationExpression2|]
T
   

            = [| [|OperationExpression1|]
T
 []   

           [|OperationExpression2|]
 T

 |]
 T  

           = [| w1: [Q1, P1] [] w2: [Q2, P2] |]
 T

  

           = var r: ℕ, choose r · if (r<p ∧ Q1 → w1: [Q1, P1] []  

                                                   r<p ∧ ¬Q1→ w2: [Q2, P2] []  
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                                                   r>=p ∧ Q2→w2: [Q2, P2] []   

                                                   r>=p ∧ ¬Q2→ w2: [Q2, P2]    

                                                fi 

• If both of the operation expressions are in the form of 

promotion, the mapping is as follows: 

                [|OperationExpression1 [] OperationExpression2|]
T
  

                 = var r: ℕ, choose r ∙  

if r<p ∧ [| pre (OperationExpression1) |]
 T

→  

        [| OperationExpression1|]
 T

 []  

    r<p ∧ ¬ [| pre (OperationExpression1) |]
 T

 →  

        [| OperationExpression2|]
 T

 []  

    r>=p ∧ [| pre (OperationExpression2) |]
 T

 → 

        [| OperationExpression2|]
 T

 [] 

    r>=p ∧ ¬ [| pre (OperationExpression2) |]
 T

 →   

        [| pre (OperationExpression1) |]
 T

  

fi 

 

7) OperationExpression1;OperationExpression2 

The same notion of sequential composition exists in MRC. 

Thus, the translation function is as follows: 

     [| OpeartionExpression1 ; OperationExpression2 |]
T
 =   

     [|OperationExpression1|]
T
 ; [|OperationExpression2|]

T 

 

8) Expression.Identifier 

We propose the translation function for when Expression is 

a variable with type class schema, and Identifier is an 

operation name (i.e., operation promotion) as follows: 

[|Expression.Identifier|]
T
= Identifier (Expression, opi) 

 

where opi denotes other parameters of Identifier, i.e., the 

parameter list of the operation whose name is Identifier except 

ClassName_index. 

 

Until now, we have reached at the following model in order 

to model the concept “object” in MRC: 

type identity ::= null | REF ℕ 

type B ≙ False | True 

type ClassName_state ≙ {[|State.Declaration |]
T
, Init: B, 

self: identity, [|inheritedClass0.State.Declaration|]
T
,…, 

[| inheritedClassm.State.Declaration|]
T
, 

|[|State.predicateList|]
T
 ∧ 

[|inheritedClass0.State.predicateList |]
T∧ …∧ 

[| inheritedClassm.State.predicateList |]
T
  ∧ Init ⇔

([|InitialState.predicateList |]
T
 ∧ 

[|inheritedClass0.InitialState.predicateList|]T∧ …∧ 
[|inheritedClassm.InitialState.predicateList |]

T
 )} 

 

type State_Object �  

{ClassName0_reftab:identityClassName0_state, …, 

 ClassNamen_reftab: identity  ClassNamen_state  | 

� ��� ClassName�_reftab �  Ø�
���  ∧ 

� ��� ClassName�_reftab�
��� ⊆ ran REF } 

Also, we must import each operation which is promoted in 

the class schema, in its corresponding module.    

In order to model dynamic instantiation of objects in MRC, 

we consider a procedure whose name is ClassName_new. This 

procedure has one parameter whose name is obj with type 

identity and in the form of call by value result (considering 

value result is due to the semantics of object in OZ [4]). This 

parameter is a new object identity that must be instantiated. 

Before instantiating the object of ClassName, we must 

instantiate all of the objects which are state variables in 

ClassName. Then, this procedure checks whether obj is a new 

identity and is not null. Also, ClassName_new considers a 

variable with type ClassName_state for obj which is in the 

initial state of ClassName and adds obj along with its 

associated ClassName_state value to ClassName reference 

table (i.e., ClassName_reftab).  

As we said earlier, we consider a variable 

ClassName_reftab in each module. After the instantiation of 

the new object, its object identity and ClassName_state value 

must be added to ClassName_reftab; hence, we consider a 

new procedure whose name is ClassName_synch in each 

module (which is obtained through the mapping of class 

schema). This procedure adds object identity and its 

ClassName_reftab (they are ClassName_synch parameters) to 

ClassName_reftab in the mentioned module. We call this 

procedure in ClassName_new after the instantiation of the new 

object. The complete model of modules object and ClassName 

in MRC are as follows (we consider ClassName_reftab = Ø as 

the initial predicate): 

module object 

 import ClassName0_synch, …, ClassNamen_synch 

 var state:State_Object 

 procedure ClassName0_new (value result obj:identity) 

 ≙ 
    var r1: identity 

    ClassNamei_new (indexi); …;ClassNamej(indexj);  

  state: [ obj≠ null ∧  

                   obj ∉(dom ClassName0_reftab ∪   … ∪   

                             dom ClassNamen_reftab),  

  ∃ r:ClassName0_state. r.self=obj ∧ r.Init ∧ state=  

  {state0.ClassName0_reftab ∪ {obj ֏r},      

  state0.ClassName1_reftab, … ,          

  state0.ClassNamen_reftab} ∧ r1 = r ] ;       

  ClassName0_synch   (obj, r1)  .  .  . 
 procedure ClassNamen_new (value result obj:identity) 

      ≙… 

end 
 

module ClassName 

 export DeclarationName which is in the visibility list and    

    is an operation name. 
 

 import operations which are used in operation promotion 

 in class schema ClassName and also all of the procedures  

   of those module(s) corresponding to parent class(es). 
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  var ClassName_reftab: identity ↣ ClassName_state 
 

  procedure ClassName_synch (value obj: identity, value 

   r:ClassName_state)�  
       ClassName_reftab: [true, ClassName_reftab =    

    ClassName_reftab0 ∪ (obj֏r)] 
 

  procedure ClassName_OperationSchemaName … 
 

  procedure ClassName_OperationName… 
 

  initially ClassName_reftab=Ø 

end 

 

After mapping OZ specifications to MRC specifications 

using our translation function and model of concept “object”, 

tools such as RED [17] can be used in order to automate the 

refinement of resulting MRC specifications to final code. 

V. CASE STUDY 

Using the translation function described in the previous 

section, the following MRC specification is obtained from 

class schema “Queue” given in Fig. 1.: 

 type B ≙ True | False 

 type identity ≙ null |REF ℕ 

 type Queue_state ≙ {[|items: Seq ℕ, count: ℕ|]
T
, Init: B, 

 self:  identity | Init ⇔ ( [| items=<> ∧ count=0 |]
T
) } 

 

 module Queue 

  export Queue_Join, Queue_Leave 

  var Queue_reftab: identity  Queue_state 

 

  procedure Queue_synch (value obj: identity, value   

  r:Queue_state) �   Queue_reftab: [true, Queue_reftab = 

  Queue_reftab0 ∪ (obj֏r)] 
 

 

  procedure Queue_Join (value Queue_index: identity,  

   value [|item: ℕ|]
T)≙ 

  Queue_reftab: [ [| ∃ items′: Seq ℕ, count′: ℕ, item?:ℕ. 

  items′=items ◠  <item?> ∧ count′=count + 1|]
T
, [|   

  items′=items ◠ <item?> ∧  count′=count+1|]
T
 ] 

 

  procedure Queue_Leave (value Queue_index:identity, 

   value result [|item:ℕ|]
T
)≙ 

  Queue_reftab, item: [ [| ∃ items´: Seq ℕ, count´: ℕ,  

   item!:ℕ. items= <item!> ◠  items′|]T
, [| items=   

   <item!>   ◠   items′|]T
 ] 

 end 

 
To apply our approach for considering objects and the 

related framework in MRC, we map class schema 

“multiplexer” [4] which is as follows: 

 

Status ::= idle | busy 

   Multiplexer 

 ↾(status, INIT, Join1, Join2, Transfer, Leave) 

     

   input1, input2, output: Queue 

   ∆ 
   status: Status 

   input1≠input2 ∧ input1≠output ∧ input2≠output 

   status = idle ⇔output.count=input1.count + input2.count 

 

   INIT 

    input1.INIT ∧ input2.INIT ∧ output.INIT 

 

 Join1 ≙ input1. Join 

 Join2 ≙ input2.Join 

 Transfer1 ≙ input1.Leave || output.Join 

 Transfer2 ≙ input2.Leave || output.Join 

 Transfer ≙ Transfer1 [] Transfer2 

 Leave ≙ output. Leave 

  

Mapping of this class schema is as follows: 

type Status ≙ idle | busy 

type Multiplexer_state ≙ {[|input1, input2, output: identity, 

status: Status|]
T
, Init: B, self: identity |  

[| input1 ≠ input2 ∧ input1 ≠ output ∧ input2 ≠ output ∧ 

status=idle⇔output.count = input1.count + input2.count |]
T
 

∧ Init ⇔ 

( [| input1.INIT ∧ input2.INIT ∧ output.INIT |]
T
)} 

 

module Multiplexer  

  export Multiplexer_Join1, Multiplexer_Join2,     

   Multiplexer_Transfer, Multiplexer_Leave 

  import Queue_Join, Queue_Leave 

  var Multiplexer_reftab: identity  Multiplexer_state 

 

  procedure Multiplexer_synch (value obj: identity, value 

  r:Multiplexer_state) �  Multiplxer_reftab: [true,    

  Multiplexer_reftab = Multiplexer_reftab0 ∪ (obj֏r)] 

 

  procedure Multiplexer_Join1 (value Multiplxer_index: 

  identity, value Queue_index:identity, value [| item: ℕ|]
T
) 

      ≙ Queue_Join (input1, item) 
 

  procedure Multiplexer_Join2 (value Multiplxer_index: 

  identity, value Queue_index:identity, value [| item:ℕ|]
T
) 

        ≙ Queue_Join (input2, item) 
 

  procedure Multiplexer_Leave (value Multiplexer_index: 

  identity, value Queue_index:identity, value result [|  

  item: ℕ|]
T
) 

        ≙ Queue_Leave(output, item) 
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  procedure Multiplexer_Transfer1 (value       

  Multiplexer_index: identity)≙ 

  Queue_Leave(input1, item) ; Queue_Join(output, item) 

 

  procedure Multiplexer_Transfer2 (value       

  Multiplexer_index:identity)≙ 

  Queue_Leave(input2, item) ; Queue_Join(output, item) 

 

  procedure Multiplexer_Transfer (value       

  Multiplexer_index:identity)≙ 

  var r:ℕ, choose r∙ if r<1000 ∧ [|pre(Transfer1)|]
T
 →  

         Multiplexer_Transfer1(Multiplexer_index)  [] 

                                            r<1000 ∧ ¬[|pre(Transfer1)|]
T
 → 

       Multiplexer_Transfer2(Multiplexer_index) []  

                                              r>=1000 ∧ [|pre(Transfer2)|]
T
 → 

          Multiplexer_Transfer2(Multiplexer_index) [] 

                                              r>=1000 ∧¬[|pre(Transfer2)|]
T
→

              Multiplexer_Transfer1(Multiplexer_index) fi 

   end 

 
Object framework is as follows: 

type State_Object ≙  

{Queue_reftab: identityQueue_state,  

  Multiplexer_reftab: identity Multiplexer_state |  

  (dom Queue_reftab ∩ dom Multiplexer_reftab) = Ø ∧    

  (dom Queue_reftab ∪ dom Multiplexer_reftab) ⊆  
  ran REF } 

 

module object 

 import Queue_synch, Multiplexer_synch 

 var state:State_Object 

 procedure Queue_new (value result obj:identity) ≙ 

    var r1 

    state: [  obj≠ Null ∧ obj ∉(dom Queue_reftab ∪ dom  

  Multiplexer_reftab),  

  ∃ r:Queue_state. r.self=obj ∧ r.Init ∧ state=      

  {state0.Queue_reftab ∪ {obj ֏r},          

  state0.Multiplexer_reftab } ∧ r1 = r ] ; Queue_synch   

  (obj, r1) 

 

  procedure Multiplexer_new (value result obj:identity) 

 ≙ var r1 

  Queue_new(state0.input1);Queue_new(state0.input2);  

  Queue_new(state1.output) ;state: [  obj≠ Null ∧ obj   

  ∉(dom Queue_reftab ∪  dom Multiplexer_reftab),  

  ∃ r:Multiplexer_state. r.self=obj ∧ r.Init ∧ state=    

  {state0.Multiplexer_reftab ∪ {obj ֏r},        

  state0.Queue_reftab} ∧ r1 = r ] ; Multiplexer_synch (obj, 

  r1); 

end 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a methodology for refinement of 

OZ specifications using MRC. First, we proposed a translation 

function for mapping OZ constructs into their MRC 

counterparts, and then we modeled concept “object” in MRC. 

Finally, we proposed how to model dynamic instantiation of 

objects in MRC while OZ itself does not cover this facility. In 

this way, in order to refining OZ specifications, one should 

first map an OZ specification into its equivalent specification 

in MRC using our translation function and our model of 

concept “object”. Then, the resulting MRC specification can 

be refined automatically using MRC refinement tools such as 

RED. 

Unlike existing animation approaches [1, 2, 3, 5, 6, 7, 8, 9, 

10, 11, 12], our methodology pays attention to the correctness 

using MRC refinement laws, and also our translation function 

covers mapping of abbreviations, free types and basic types in 

global. Comparing our methodology with the refinement 

approach of [13, 14], our methodology supports fine-grained 

refinement using MRC laws. Of course, Morgan’s Refinement 

framework is open ended so that makes it easy to add coarse-

grained refinement laws (e.g. module refinement law) to it. 

Finally, we can use tools such as RED to automate the 

refinement of OZ specifications using MRC indirectly. 
Nevertheless, some other constructs of OZ, such as 

distributed operators, other cases of abbreviation definition 

like when the right side of the abbreviation is in the form of 

set definition, generic definition and finally other cases of free 

types (when constructors are used in the definition), are still 

open considering our mapping process. 

In our future work, we are going to 

1. extend our translation function in order to map the 

remaining constructs of Object-Z, 

2. show the applicability of our method using a new 

case study including a larger subset of Object-Z, 

3. show the automation of our methodology using one 

of MRC tools such as RED, and finally 

4. add refinement laws for module construct in MRC. 

REFERENCES   

[1] S. Ramkarthik, and C. Zhang, “Generating java skeletal code with 

design contracts from specifications in a subset of object-z, “in 5th 
IEEE/ACIS International Conference on Computer and Information 

Science, , pp. 405-411, 2006. 

[2] X.Ni, and C.Zhang, “Converting specifications in a subset of object-z to 
skeletal spec# code for both static and dynamic analysis, “ in Journal of 
Object Technology, Vol. 7, No. 8, pp.165-185, 2008. 

[3] T.McComb, and G.Smith, “Animation of object-z specifications using a 
z animator, “in First International Conference on Software Engineering 

and Formal Methods, pp. 191-200, 2003. 

[4] G. Smith, The Object-Z Specification Language: Advances in Formal 
Methods, Kluwer Academic Publishers, 2000. 

[5] R. Duke, and G. Rose, Formal Object-Oriented Specification Using 

Object-Z, Macmillan, UK, 2000. 
[6] G. Rafsanjani, and S. J. Colwill, “From object-z to c++: a structural 

mapping,” in Z User Meeting (ZUM’92), Springer-Verlag, pp. 166-179, 

1992. 
[7] M. Fukagawa, T. Hikita, and H. Yamazaki, “A mapping system from 

object-z to c++,” in 1st Asia-Pacific Software Engineering Conference 

(APSEC94), IEEE Computer Society Press,  pp. 220-228, 1994. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011 

1355International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f



 

 

[8] W. Johnston, and G. Rose,” Guidelines for the manual conversion of 

object-z to c++, “ in SVRC Technical Report 93-14, 1993. 
[9] M. Najafi, and H. Haghighi, “An animation approach to develop c++ 

code from object-z specifications, “ in International Symposium on 

Computer Science and Software Engineering, pp. 9-16, 2011. 
[10] C. Fischer, Combination and implementation of processes and data: 

from csp-oz to java, PhD Thesis. University of Oldenburg, 2000. 

[11] Z.Wang, M.Xia, and Y.Zhao, “Transform mechanisms of object-z based 
formal specification to java,” in International Conference on 

Computational Intelligence and Software Engineering, pp. 1-4, 2009. 

[12] A. Griffiths, “From object-z to eiffel: a rigorous development method,” 
in Technology of Object-Oriented Languages and Systems: TOOLS 18, 

Prentice-Hall, 1995. 

[13] J. Derrick, and E. A. Boiten, “Refinement of objects and operations in 
object-z, “ in Formal Methods for Open Object-based Distributed 

Systems IV, pp. 257-277, Kluwer Academic Publishers, 2000. 

[14] J. Derrick, and E. A. Boiten, Refinement in z and object-z: foundations 
and advanced applications, Formal Approaches to Computing and 

Information Technology (FACIT), 1st edition, Springer-Verlag, 2001. 

[15] C. Morgan, Programming from specifications, Prentice Hall, 1990. 
[16] J. Woodcock, and J. Davies, Using z: specification, refinement, and 

proof, Prentice-Hall, 1996. 

[17] D. A. Carrington, and K. A. Robinson, “Tool support for the refinement 
calculus, “in Computer-Aided Verification, Vol. 3 of DIMACS Series in 

Discrete Mathematics and Theoretical Computer Science, pp. 381-394, 

American Mathematical Society, 1991. 

 

 

 

 

 
 

 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011 

1356International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f




