

Abstract—Morgan’s refinement calculus (MRC) is one of the

well-known methods allowing the formality presented in the program

specification to be continued all the way to code. On the other hand,

Object-Z (OZ) is an extension of Z adding support for classes and

objects. There are a number of methods for obtaining code from OZ

specifications that can be categorized into refinement and animation

methods. As far as we know, only one refinement method exists

which refines OZ specifications into code. However, this method

does not have fine-grained refinement rules and thus cannot be

automated. On the other hand, existing animation methods do not

present mapping rules formally and do not support the mapping of

several important constructs of OZ, such as all cases of operation

expressions and most of constructs in global paragraph. In this paper,

with the aim of providing an automatic path from OZ specifications

to code, we propose an approach to map OZ specifications into their

counterparts in MRC in order to use fine-grained refinement rules of

MRC. In this way, having counterparts of our specifications in MRC,

we can refine them into code automatically using MRC tools such as

RED. Other advantages of our work pertain to proposing mapping

rules formally, supporting the mapping of all important constructs of

Object-Z, and considering dynamic instantiation of objects while OZ

itself does not cover this facility.

Keywords—Formal method, Formal specification, Formal

program development, Morgan’s Refinement Calculus, Object-Z

I. INTRODUCTION

UILDING a reliable system is one of the main challenges

when developing large, complex software systems [1].

Formal methods which refers to mathematically rigorous

techniques and tools for the specification, design and

verification of software systems, have offered a logical

solution to the problem of software reliability [1, 2].

Every formal method requires a soundly based specification

language. The popularity of the object-oriented programming

approach has led to the adoption of a similar method for

expressing encapsulation and reuse concepts in formal

specifications [3]. Object-Z [4, 5] is a Z-based notation which

provides specific constructs to facilitate specification in an

object-oriented style [2].

Many contributions [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14]

have been so far proposed for developing programs from OZ

specifications that can be categorized to animation [1, 2, 3, 6,

7, 8, 9, 10, 11, 12] and refinement [13, 14] methods.

M. N. Faculty of Electrical and Computer Engineering, Shahid Beheshti

University, Tehran, Iran (e-mail: m.najafi@mail.sbu. ac.ir).

H. H. Faculty of Electrical and Computer Engineering, Shahid Beheshti

University, Tehran, Iran (phone: 9821-2990-4136;e-mail:

h_haghighi@sbu. ac.ir).

Rafsanjani and Colwill [6] described some basic rules for

structural mapping from Object-Z to C
++

, but these rules do

not cover some specification constructs of Object-Z, such as

precondition, postcondition, class invariants, visibility list,

operation operators and some types of definitions like class

variables and generic parameters. In [7], Fukagawa et al. has

augmented the work of [4] by presenting two new rules that

consider constructor for types of constants and template class

for generic parameters.

In [8] it has been given another method to animate OZ by

C
++

 which covers precondition, postcondition, class invariants,

visibility list, some types of definitions like free types and

class variables; however, it does not consider axiomatic

definitions and multiple inheritance. Also, for a subset of

operation operators including conjunction, negation, choice

and parallel composition, rules are not proposed explicitly. In

[9], we proposed an animation approach to develop C
++

 code

from Object-Z specifications which considers several Object-

Z concepts whose mappings have not been proposed in none

of the previous works. For example, animation rules for all

types of definitions like class union, axiomatic definitions and

all of operation operators are proposed in [9].

In [3], a methodology for animating the Object-Z

specification language using a Z animation environment is

presented. The focus of this work is to model in Z a

framework to manage the dynamic instantiation of objects and

object references. Also, some other works exist in the

literature which animates Object-Z specifications by other

object-oriented programming languages, such as java [1, 10,

11], Eiffle [12], and Spec# [2]. Nevertheless, none of the

mentioned animation methods did not pay attention to

correctness, their mapping rules did not cover some important

constructs of OZ such as all cases of operation expressions

and also, they did not propose mapping rules formally which

can help to prove the correctness of mapping.

On the other hand, Derrick and Boiten [13, 14] proposed a

refinement approach in Object-Z which considers a correct

refinement of a class schema to another class schema.

However, fine-grained refinement rules, such as refinement at

the operation schema level, are needed to do the refinement

from design to code.

We use [3] to propose a methodology for refinement of OZ

specifications using MRC. The main contribution of this

methodology is to give an automatic path from OZ

specifications to code. Our approach is to propose a translation

function which maps OZ constructs to their MRC counterparts

according to OZ concrete syntax [4], MRC abstract syntax

which we define later, and also a framework in MRC in order

Mehrnaz Najafi, Hassan Haghighi

Refinement of Object-Z Specifications Using

Morgan’s Refinement Calculus

B

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1347International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

to manage object references. Other contributions of our

methodology are the ability to use fine-grained refinement

rules, the introduction of dynamic instantiation of objects

while OZ itself does not cover this facility, proposing

translation rules formally and supporting mapping of

important constructs, such as abbreviations in global

paragraph while none of the related methods in the literature

have not supported the animation\refinement of this construct.

The paper is organized in the following way. In section 2,

the preliminaries of this work are reviewed by focusing on OZ

concepts and constructs. In section 3, we provide the abstract

syntaxes of those parts of both OZ and MRC in which we are

concerned. Section 4 presents our methodology translating OZ

constructs into their counterparts in MRC. Section 5 includes a

case study showing the applicability and usefulness of our

approach. Finally, the last section is devoted to the conclusion

and some directions for future work.

II. PRELIMINARIES

To mention the preliminaries of this paper, we first review

the work of McComb and Smith who proposed a method of

animating OZ which considers reference semantics and uses

an existing Z animator in a way that is both automatable and

transparent to the user [3]. In order to introduce concept

“object” in Z, McComb and Smith modelled object identity

with a free type whose name is _identity as follows:

_identity::= _null | _REF <<ℕ>>

The constructor “_REF” allows us to associate a unique

object identity with each natural number being irrespective to

the class the object belongs to. Value “_null” allows us to

ignore parts of a specification for the purposes of animation. It

acts as a placeholder for the reference to an object which has

not been instantiated in the animation environment.

Also, they considered an additional constant self to cater OZ

notion of self reference; see [3] for more details. Also, they

modelled in Z a framework to manage the dynamic

instantiation of objects. The mentioned framework comprises

an explicit reference table, i.e., finite mappings, where object

identities are mapped to instances of a schema describing the

state of each class (i.e., they modelled the state of class

schema by schema in Z), and also, a schema whose name is

_ClassName_new and is declared in order to model dynamic

instantiation of objects operation; see [3] for more details.

Finally, all operations of OZ specifications are transformed to

Z operations based on the mentioned reference table.

As another preliminary of our work, we now review OZ

concepts. In the following we show what appear in global

paragraphs of OZ [4]:

Paragraph::= BasicTypeDefinition

 | AxiomaticDefinition

 | GenericDefinition

 | AbbreviationDefinition

 | FreeTypeDefinition

 | Schema

 | Class

 | Predicate

Considering the above syntax, concepts of OZ which we

cover in our methodology are [4, 5]:

Basic Type Definition: introduces one or more basic types by

the inclusion of their names in a square-bracketed, comma-

separated list.

Abbreviation Definition: introduces a type whose name is

the identifier on the left-hand side of the definition and whose

values are those of the expression on the right-hand side.

Free Type Definition: introduces a type whose name is the

identifier on the left-hand side of the expression and whose

values are given by the branches of the right-hand side of the

definition.

Class: the major new construct in Object-Z is the class

schema which captures the object-oriented notion of a class by

encapsulating a single state schema, and its associated initial

state schema, with all the operation schemas of the given state.

The structure of the class schema specification in Object-Z

is shown below [4]:

 ClassName [FormalParameters]

 VisibilityList

 InheritedClass(es)

 LocalDefinition(s)

 State

 InitialState

 Operations

Considering the above syntax, concepts which we use in our

methodology are [4, 5]:

Visibility list: lists those features that are visible to the

environment of an object of the class. In class schema

“Queue” [4], shown in Fig. 1, count, INIT, Join and Leave are

visible features.

Inheritance: when a class is inherited by another class in

Object-Z, its definitions, i.e., state and initial state schemas

and operations, are merged with those of the inheriting class.

State schema: is a nameless box with optional declaration and

predicate parts. The predicate of a state schema is called the

class invariants. Variables which are defined in the declaration

part of the state schema are called state variables. In class

schema “Queue”, items and count are state variables, and this

class schema does not have any invariants. State variables are

categorized to:

1. Primary variables: may only be changed by an

operation in which they are declared. In class schema

“Queue”, items and count are primary variables.

2. Secondary variables: may be changed by any

operation.

Initial State: defines the initial states of a class, and its name is

INIT. In class schema “Queue”, items=<> and count=0 are

predicates of its initial state schema.

Operations: defines the permissible changes in the state that

an object of the class may undergo. In class schema “Queue”,

two operations Join and Leave are defined. Related concepts

are:

1. Operation schema: is a named box which may

consist of a ∆-list, a declaration and a predicate part.

∆-list consists of primary variables that the operation

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1348International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

may change when applied to an object of the class.

The declaration part is for auxiliary variables needed

to define the operation. They are generally input and

output variables. The predicate part relates the

possible states before the operation execution to the

possible states after its execution. Class schema

“Queue” has two operation schemas which are Join

and Leave.

2. Operation expression: includes operation schema

definitions and operation promotions defined later.

An operation expression may be also an identifier

with an optional rename list enabling previously

defined operations to be modified or combined.

3. Operation operators: Object-Z has the following

operation operators used to modify and combine

operation expressions:

• Conjunction (∧): used to model the

simultaneous occurrence of two operations.

• Parallel composition (|| or ||!): used to model

communication between simultaneously

occurring operations in both directions.

• Choice (▯): used to model the occurrence of

an applicable operation among two

operations. If both operations are applicable,

then this operator selects one of them

nondeterministically.

• Sequential composition (;): used to model

two operations occurring in sequence. It also

allows the communication between the

operations, but the communication is only

possible in one direction.

 Queue

↾(count, INIT, Join, Leave)

 items: seq ℕ

 count: ℕ

 INIT

 items =<>

 count=0

 Join

 ∆(items, count)

 item?:ℕ

 items´=items◠<item?>

 count´=count + 1

 Leave

 ∆(items)

 item!:ℕ

 items=<item!>◠items´

Fig. 1 Class schema Queue

Other important concepts in Object-Z are [4, 5]:

o Operation promotion: any class can have

operations which model the application of

operations to objects whose identities are declared

as global constants. Such operations are said to

promote the operations of the objects to operations

of the class. An operation promotion is defined

using the dot notation a.Op, where a is an

expression which evaluates to the identity of the

referenced object, and Op is the name of a visible

operation of the related class.

o Attribute promotion: visible attributes of an object

may be promoted to any scope in which the

identity of that object may be referenced.

III. ABSTRACT SYNTAXES OF OZ AND MRC

In this section we provide the abstract syntaxes of those

parts of both OZ and MRC, in BNF notation, in which we are

concerned.

A. Abstract Syntax of Object-Z

For a complete account of the concrete syntax of Object-Z

see [4]. We are only interested in those parts used in our

mapping.

Abstract syntax of Object-Z:

1) Specification

Specification ::= Paragraph
 . . .
 Paragraph

2) Global Paragraphs

We proposed the abstract syntaxes of global paragraphs and

class in section 2. By considering the abstract syntax of global

paragraphs or paragraph, abstract syntaxes of

BasicTypeDefinition, AbbreviationDefinition and

FreeTypeDefinition are as follows:

BasicTypeDefinition ::= [Identifier, …, Identifier]

AbbreviationDefinition ::= Abbreviation == Expression

Abbreviation ::= VariableName [FormalParameters]

 | PrefixGenericName Identifier

 | Identifier InfixGenericName Identifier

FreeTypeDefinition ::= Identifier::= Branch|…|Branch

Branch ::= Identifier

 | VariableName <<Expression>>

3) Class Paragraphs

Visibilitylist ::= ↾(DeclarationNameList)

InheritedClass ::= ClassName[ActualParameters]

 [RenameList]

State ::= [Declaration [∆ Declaration][|Predicate]]

 | [∆ Declaration [|Predicate]]

 | [Predicate]

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1349International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

InitialState ::= INIT ≙ [Predicate]

Operation ::= OperationName

 DeltaList

 [Declaration]

 [PredicateList]

OperationName ≙ OperationExpression

4) Operation Expressions

OperationExpression ::= [Declaration [|Predicate]]

 | [[Predicate]]

 | [DeltaList[Declaration][|Predicate]]

 | OperationExpression∧OperationExpression

 | OperationExpression||OperationExpression

 | OperationExpression[]OperationExpression

 | OperationExpression;OperationExpression

 | Expression.Identifier

B. Abstract Syntax of Morgan’s Refinement Calculus

We could not find the official concrete syntax of the MRC

in the literature. Taking our inspiration from [15], we built

part of an abstract syntax of MRC which is needed for our

methodology as follows:

Specification ::= ModuleSt

 | TypeSt

 | BasicTypeSt

ModuleSt ::= module Name

 [export NameList]

 [import NameList]

 [var VarListType]

 [and Pred]

 [procedure
 .
 .
 .
 procedure]

 initially Pred

 end

TypeSt ::= type Name ≙ Type_expression

BasicTypeSt ::= [Identifier, …, Identifier]

procedure Name [(ParamList)] ≙ SpecSt

SpecSt ::= Frame [PreCondition, PostCondition]

 | SpecSt ; SpecSt

 | ProcCall ; SpecSt

 | SpecSt ; ProcCall

 | ProcCall

ProcCall ::= ProcName [(VarList)]

ParamList ::= value VarDecl, ParamList

 | result VarDecl, ParamList

 | value result VarDecl, ParamList

 | reference VarDecl, ParamList

PreConcition::= Pred

PostCondition::=Pred

Frame::= :

 |VarList:

IV. OUR REFINEMENT METHODOLOGY

For modelling the concept “object” in MRC, we consider a

module whose name is object. Also, a new free type whose

name is identity will be considered for modelling referential

semantics as follows; for more details about this free type see

[3] (this free type is similar to _identity in [3] which REF and

null have the same functionalities as _REF and _null in

_identity).

type identity ::= REF ℕ | null

Now we define a translation function [| |]
T
 which translates

each part of OZ abstract syntax into its counterpart in MRC

abstract syntax.

Definition 1: Translation Function [| |]
 T

:

[| |]
T
: OZ→MRC is a function from OZ to MRC which is

explained in detail as follows:

A. Mapping of Global Paragraphs

Basic Type Definition: the same notion of basic type exists

in MRC. Thus, the translation for basic types is as follows:

[| BasicTypeDefinition |]
T
 = [| Identifier, …, Identifier |]

T
=

[| Identifier, …, Identifier |]
T

Abbreviation Definition: We consider mapping of abbreviation

definition in a case in which the right side of the abbreviation

is in the form of computational expression and none of its

expression elements is numeric, as follows:

[| Abbreviation = = Expression |]
T
 = type Abbreviation = [|

Expression |]
 T

 (which separates each operation expression

element with ‘|’)

Free Types: we propose the translation for free type definition

when all of its branches are identifier, as follows:
[| Identifier ::= Branch0|…|Branchn |]

T
= type Identifier = [|

Branch0|]
T
|…| [|Branchn|]

T

Class: [| class schema (whose name is ClassName) |]
 T

 =

module ClassName . . . end

B. Mapping of Class Paragraphs

Visibility list: we consider each declaration name in

visibility list which is an operation name as an export name

list. If class schema is a parent class schema, we must export

all of its operations because a child class schema must inherit

all of the operations of its parent class schema. Note that we

do not export a declaration name which is not an operation

name. This is due to the manner by which the mapping of state

schema declarations will be proposed. So, the translation for

this concept is as follows:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1350International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

[| VisibilityList |]
T

= export DeclarationName which is an

operation name and is not INIT.

Inherited class: MRC does not have any direct

corresponding concept for mapping of inheritance. An

acceptable solution could be to use the “uses” relation. In this

way, we must import all procedures of those module(s)

corresponding to parent class(es) because a child class schema

can use all of the operations of its parent class schema.

State: we consider a new type whose name is

ClassName_state and is in the form of set comprehension. Set

declaration consists of mapping of

� state declaration,

� inherited class (es) state declaration,

� a Boolean variable (Note that we must define type

Boolean using type expression earlier),

� Init which will be used to accommodate the predicate

a.INIT for an object a that will be evaluated as true

precisely when that object is in its initial state,

� and a variable self in order to cater for OZ notion of

self reference.

Set property consists of mapping of

� state predicate list,

� inherited class (es) state predicate list,

� and also a state invariant that is introduced to force

the Init variable to be always equivalent to the

predicate lists in initial state schema of class schema

and its inherited class (es) schemas.

The translation of state is thus as follows:

type B ≙ False|True

[|State|]
T
 = type ClassName_state ≙

{[|State.Declaration|]
T
, Init: B, self: identity,

[|inheritedClass0.State.Declaration|]
T
 ,…,

[| inheritedClassm.State.Declaration|]
T
,

|[|State.predicateList|]
T
 ∧

[|inheritedClass0.State.predicateList|]
T∧ … ∧

[| inheritedClassm.State.predicateList |]
T
 ∧ Init ⇔

([|InitialState.predicateList|]
T
 ∧

[|inheritedClass0.InitialState.predicateList|]
T∧ … ∧

[|inheritedClassm.InitialState.predicateList |]
T
)}

For modeling the concept “object”, we consider a variable

in each module which is obtained through the mapping of

class schema; the variable name is ClassName_reftab which

holds objects of corresponding class schema (i.e., ClassName).

This variable maps each object identity to its associated

ClassName_state as follows:

ClassName_reftab: identity ClassName_state

Also, we consider a type whose name is State_Object which

comprises reference tables (i.e., ClassName_reftab) of each

class schema in the specification and a variable whose name is

state with type State_Object in module object. The aim of

declaring State_Object is to ensure that each identity is

assigned to a unique object, and null is not mapped to any

object. Declaration of this type is as follows:

type State_Object

{ClassName0_reftab:identityClassName0_state, …,

 ClassNamen_reftab: identity ClassNamen_state |

� ��� ClassName�_reftab � Ø�
��� ∧

� ��� ClassName�_reftab�
��� ⊆ ran REF }

Initial State: the mapping of initial state has been already

considered in definition of ClassName_state.

Operation Schema: we map each operation schema to a

procedure in the related module (i.e., that module obtained

from the mapping of class schema which includes the

mentioned operation schema). The procedure name is

ClassName_OperationSchemaName. We propose its parts

according to the abstract syntax of procedure in MRC

presented in section 3. The parameters list of the procedure

consists of an index with type identity which is the object

identity that the procedure should be applied to; indexes for

other objects which exist in ClassName and their operations

are promoted in ClassName using type identity and the

mapping of operation schema declaration, respectively. The

procedure frame consists of ClassName_reftab and all of those

operation schema declaration elements which are outputs.

Also, its pre part (according to the abstract syntax of

procedure in MRC) will be obtained by using the definition of

getting precondition from postcondition, i.e., ∃ State´.

Operation\output and its post part is predicateList itself (see

the concrete syntax of operation schema in section 3).

[| Operation Schema |]
T
 = procedure

ClassName_OperationSchemaName (value

ClassName_index: identity, [| Declaration |]
 T

) ≙

ClassName_reftab, DeclarationName which is in

Declaration and is in the form of output: [[|∃ State′.

Operation\declarations which are outputs |]
 T

, [|

predicateList|]
 T

]

C. Mapping of Operation Expressions

Mapping of all cases of operation expressions are as

follows:

1) [DeltaList[Declaration][|Predicate]]

We map this case to specification statement “w: [pre, post]”

whose frame, i.e., w, is ClassName_reftab along with the

output part of declaration. Also, its pre will be obtained by

using the definition of getting precondition from Predicate,

and its post is Predicate itself. Thus, the translation of this

case is as follows:

[| [DeltaList [Declaration] [|Predicate] |]
 T

 =

ClassName_reftab, Declarations which are outputs: [[|

∃State´. [DeltaList [Declaration] [|Predicate]]\

Declarations which are outputs|]
 T

, [|Predicate|]
 T

]

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1351International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

2) [Declaration[|Predicate]]

This operation expression is a special case of the above one.

Thus, its translation is similar to item 1:

[| [DeltaList [|Predicate] |]
 T

 = ClassName_reftab: [[|

∃State´. [DeltaList [|Predicate]] |]
 T

, [|Predicate|]
 T

]

3) [[Predicate]]

Similarly, this operation expression is a special case of item

1 above and thus its translation is as follows:

[|Predicate|]
T
= ClassName_reftab:

[∃State´. [[|Predicate]] |]
 T

, [|Predicate|]
 T

]

For the following operation expressions, we consider a

procedure whose name is ClassName_OperationName, and its

parameters list consists of a variable whose name is

ClassName_index with type identity and also those variables

obtained from merging inputs and outputs of all operation

expressions except parallel composition (hidden variables

must be omitted from parameters list).

4) OperationExpression1∧OperationExpression2

We consider two cases for proposing translation function of

this operation expression as follows:

• If neither of the operation expressions are in the form

of promotion, and also the mapping of both of them

are in the form of specification statements “w: [pre,

post]” (we consider the left side of the conjunction as

w1: [Q1, P1] and the right side as w2: [Q2, P2]), we use

the conjunction notion in MRC for conjoining these

two specification statements. Also, merging the

variables of frames of the mentioned two

specification statements are necessary. The

translation function for this case is as follows (note

that we use existential quantifier in pre because, in

the beginning, both of Q1 and Q2 must be satisfied:

Q1 is satisfied for w1 and it must be satisfied for at

least one w2, too. A similar concern should be

considered for Q2):

[|OperationExpression1 ∧ OperationExpression2 |]
T

= [| [|OperationExpression1|]
T
 ∧

[|OperationExpression2|]
 T

 |]
 T

= [| w1: [Q1, P1] ∧ w2: [Q2, P2] |]
 T

= merge(w1, w2): [(∃ w2. Q1) ∧ (∃w1.Q2), P1∧P2]

• If both of the operation expressions are in the form of

promotion, then we translate the conjunction to

sequential composition as follows:

 [|OperationExpression1 ∧ OperationExpression2 |]
T
 =

 [|OperationExpression1|]
 T

; [|OperationExpression2|]
 T

5) OperationExpression1 || OperationExpression2

We consider two cases for proposing translation function of

this operation expression as follows:

• If neither of the operation expressions are in the form

of promotion, and also the mapping of both of them

are in the form of specification statement “w: [pre,

post]” (we consider the left side of the conjunction as

w1: [Q1, P1] and the right side as w2: [Q2, P2]), by

considering the semantics of this version of parallel

composition, we should hide those variables (i.e.,

communicating variables) which are inputs in one of

the operation expressions and outputs in the other one

and then equate corresponding variables; hence, we

use the notion of renaming to equate these variables,

hiding them in precondition and postcondition and

subtracting them from frame variables. Below, inputs

returns the set of input variables of an OZ operation,

and outputs returns the set of output variables. The

translation function is as follows:

[| OperationExpression1 || OperationExpression2 |]
T

= [| [|OperationExpression1|]
T
 ||

[|OperationExpression2|]
 T

 |]
 T

= [| w1: [Q1, P1] || w2: [Q2, P2] |]
 T

= (w1, w2) ₋ ({x1, … , xn} ∪ {y1, … , ym}) :

[∃z1, …, zn+m ∙

(∃ w2. Q1[z1\x1, …, zn\xn, zn+1\y1,…, zn+m\ym]) ∧

(∃w1.Q2[z1\x1, …, zn\xn, zn+1\y1, …, zn+m\ym]),

∃z1, …, zn+m ∙

(P1 [z1\x1, …, zn\xn, zn+1\y1,…, zn+m\ym] ∧

P2[z1\x1, …, zn\xn, zn+1\y1, …, zn+m\ym])]

Where {y1, …, ym} = inputs (op2) ∩ outputs (op1),

and {x1, …, xn} = inputs (op1) ∩ outputs (op2).

• If both of the operation expressions are in the form of

promotion, the translation is done similar to what we

did for case 2 of conjunction.

6) OperationExpression1 [] OperationExpression2

We consider two cases for proposing translation function of

this operation expression as follows:

• If neither of the operation expressions are in the form

of promotion, and also the mapping of both of them

are in the form of specification statement “w: [pre,

post]” (we consider the left side of the conjunction as

w1: [Q1, P1] and the right side as w2: [Q2, P2]), we use

choose to simulate the nondeterminism selection

between operation expressions. Thus, selecting the

operation expression which must be executed will be

done based on value r (see follows; note that

parameter p that, generally speaking, shows the

possibility of choosing of operation expressions must

be determined). The translation function is as

follows:

 [|OperationExpression1 [] OperationExpression2|]
T

 = [| [|OperationExpression1|]
T
 []

 [|OperationExpression2|]
 T

 |]
 T

 = [| w1: [Q1, P1] [] w2: [Q2, P2] |]
 T

 = var r: ℕ, choose r · if (r<p ∧ Q1 → w1: [Q1, P1] []

 r<p ∧ ¬Q1→ w2: [Q2, P2] []

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1352International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

 r>=p ∧ Q2→w2: [Q2, P2] []

 r>=p ∧ ¬Q2→ w2: [Q2, P2]

 fi

• If both of the operation expressions are in the form of

promotion, the mapping is as follows:

 [|OperationExpression1 [] OperationExpression2|]
T

 = var r: ℕ, choose r ∙

if r<p ∧ [| pre (OperationExpression1) |]
 T

→

 [| OperationExpression1|]
 T

 []

 r<p ∧ ¬ [| pre (OperationExpression1) |]
 T

 →

 [| OperationExpression2|]
 T

 []

 r>=p ∧ [| pre (OperationExpression2) |]
 T

 →

 [| OperationExpression2|]
 T

 []

 r>=p ∧ ¬ [| pre (OperationExpression2) |]
 T

 →

 [| pre (OperationExpression1) |]
 T

fi

7) OperationExpression1;OperationExpression2

The same notion of sequential composition exists in MRC.

Thus, the translation function is as follows:

 [| OpeartionExpression1 ; OperationExpression2 |]
T
 =

 [|OperationExpression1|]
T
 ; [|OperationExpression2|]

T

8) Expression.Identifier

We propose the translation function for when Expression is

a variable with type class schema, and Identifier is an

operation name (i.e., operation promotion) as follows:

[|Expression.Identifier|]
T
= Identifier (Expression, opi)

where opi denotes other parameters of Identifier, i.e., the

parameter list of the operation whose name is Identifier except

ClassName_index.

Until now, we have reached at the following model in order

to model the concept “object” in MRC:

type identity ::= null | REF ℕ

type B ≙ False | True

type ClassName_state ≙ {[|State.Declaration |]
T
, Init: B,

self: identity, [|inheritedClass0.State.Declaration|]
T
,…,

[| inheritedClassm.State.Declaration|]
T
,

|[|State.predicateList|]
T
 ∧

[|inheritedClass0.State.predicateList |]
T∧ …∧

[| inheritedClassm.State.predicateList |]
T
 ∧ Init ⇔

([|InitialState.predicateList |]
T
 ∧

[|inheritedClass0.InitialState.predicateList|]T∧ …∧
[|inheritedClassm.InitialState.predicateList |]

T
)}

type State_Object �

{ClassName0_reftab:identityClassName0_state, …,

 ClassNamen_reftab: identity ClassNamen_state |

� ��� ClassName�_reftab � Ø�
��� ∧

� ��� ClassName�_reftab�
��� ⊆ ran REF }

Also, we must import each operation which is promoted in

the class schema, in its corresponding module.

In order to model dynamic instantiation of objects in MRC,

we consider a procedure whose name is ClassName_new. This

procedure has one parameter whose name is obj with type

identity and in the form of call by value result (considering

value result is due to the semantics of object in OZ [4]). This

parameter is a new object identity that must be instantiated.

Before instantiating the object of ClassName, we must

instantiate all of the objects which are state variables in

ClassName. Then, this procedure checks whether obj is a new

identity and is not null. Also, ClassName_new considers a

variable with type ClassName_state for obj which is in the

initial state of ClassName and adds obj along with its

associated ClassName_state value to ClassName reference

table (i.e., ClassName_reftab).

As we said earlier, we consider a variable

ClassName_reftab in each module. After the instantiation of

the new object, its object identity and ClassName_state value

must be added to ClassName_reftab; hence, we consider a

new procedure whose name is ClassName_synch in each

module (which is obtained through the mapping of class

schema). This procedure adds object identity and its

ClassName_reftab (they are ClassName_synch parameters) to

ClassName_reftab in the mentioned module. We call this

procedure in ClassName_new after the instantiation of the new

object. The complete model of modules object and ClassName

in MRC are as follows (we consider ClassName_reftab = Ø as

the initial predicate):

module object

 import ClassName0_synch, …, ClassNamen_synch

 var state:State_Object

 procedure ClassName0_new (value result obj:identity)

 ≙
 var r1: identity

 ClassNamei_new (indexi); …;ClassNamej(indexj);

 state: [obj≠ null ∧

 obj ∉(dom ClassName0_reftab ∪ … ∪

 dom ClassNamen_reftab),

 ∃ r:ClassName0_state. r.self=obj ∧ r.Init ∧ state=

 {state0.ClassName0_reftab ∪ {obj ֏r},

 state0.ClassName1_reftab, … ,

 state0.ClassNamen_reftab} ∧ r1 = r] ;

 ClassName0_synch (obj, r1) . . .
 procedure ClassNamen_new (value result obj:identity)

 ≙…

end

module ClassName

 export DeclarationName which is in the visibility list and

 is an operation name.

 import operations which are used in operation promotion

 in class schema ClassName and also all of the procedures

 of those module(s) corresponding to parent class(es).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1353International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

 var ClassName_reftab: identity ↣ ClassName_state

 procedure ClassName_synch (value obj: identity, value

 r:ClassName_state)�
 ClassName_reftab: [true, ClassName_reftab =

 ClassName_reftab0 ∪ (obj֏r)]

 procedure ClassName_OperationSchemaName …

 procedure ClassName_OperationName…

 initially ClassName_reftab=Ø

end

After mapping OZ specifications to MRC specifications

using our translation function and model of concept “object”,

tools such as RED [17] can be used in order to automate the

refinement of resulting MRC specifications to final code.

V. CASE STUDY

Using the translation function described in the previous

section, the following MRC specification is obtained from

class schema “Queue” given in Fig. 1.:

 type B ≙ True | False

 type identity ≙ null |REF ℕ

 type Queue_state ≙ {[|items: Seq ℕ, count: ℕ|]
T
, Init: B,

 self: identity | Init ⇔ ([| items=<> ∧ count=0 |]
T
) }

 module Queue

 export Queue_Join, Queue_Leave

 var Queue_reftab: identity Queue_state

 procedure Queue_synch (value obj: identity, value

 r:Queue_state) � Queue_reftab: [true, Queue_reftab =

 Queue_reftab0 ∪ (obj֏r)]

 procedure Queue_Join (value Queue_index: identity,

 value [|item: ℕ|]
T)≙

 Queue_reftab: [[| ∃ items′: Seq ℕ, count′: ℕ, item?:ℕ.

 items′=items ◠ <item?> ∧ count′=count + 1|]
T
, [|

 items′=items ◠ <item?> ∧ count′=count+1|]
T
]

 procedure Queue_Leave (value Queue_index:identity,

 value result [|item:ℕ|]
T
)≙

 Queue_reftab, item: [[| ∃ items´: Seq ℕ, count´: ℕ,

 item!:ℕ. items= <item!> ◠ items′|]T
, [| items=

 <item!> ◠ items′|]T
]

 end

To apply our approach for considering objects and the

related framework in MRC, we map class schema

“multiplexer” [4] which is as follows:

Status ::= idle | busy

 Multiplexer

 ↾(status, INIT, Join1, Join2, Transfer, Leave)

 input1, input2, output: Queue

 ∆
 status: Status

 input1≠input2 ∧ input1≠output ∧ input2≠output

 status = idle ⇔output.count=input1.count + input2.count

 INIT

 input1.INIT ∧ input2.INIT ∧ output.INIT

 Join1 ≙ input1. Join

 Join2 ≙ input2.Join

 Transfer1 ≙ input1.Leave || output.Join

 Transfer2 ≙ input2.Leave || output.Join

 Transfer ≙ Transfer1 [] Transfer2

 Leave ≙ output. Leave

Mapping of this class schema is as follows:

type Status ≙ idle | busy

type Multiplexer_state ≙ {[|input1, input2, output: identity,

status: Status|]
T
, Init: B, self: identity |

[| input1 ≠ input2 ∧ input1 ≠ output ∧ input2 ≠ output ∧

status=idle⇔output.count = input1.count + input2.count |]
T

∧ Init ⇔

([| input1.INIT ∧ input2.INIT ∧ output.INIT |]
T
)}

module Multiplexer

 export Multiplexer_Join1, Multiplexer_Join2,

 Multiplexer_Transfer, Multiplexer_Leave

 import Queue_Join, Queue_Leave

 var Multiplexer_reftab: identity Multiplexer_state

 procedure Multiplexer_synch (value obj: identity, value

 r:Multiplexer_state) � Multiplxer_reftab: [true,

 Multiplexer_reftab = Multiplexer_reftab0 ∪ (obj֏r)]

 procedure Multiplexer_Join1 (value Multiplxer_index:

 identity, value Queue_index:identity, value [| item: ℕ|]
T
)

 ≙ Queue_Join (input1, item)

 procedure Multiplexer_Join2 (value Multiplxer_index:

 identity, value Queue_index:identity, value [| item:ℕ|]
T
)

 ≙ Queue_Join (input2, item)

 procedure Multiplexer_Leave (value Multiplexer_index:

 identity, value Queue_index:identity, value result [|

 item: ℕ|]
T
)

 ≙ Queue_Leave(output, item)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1354International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

 procedure Multiplexer_Transfer1 (value

 Multiplexer_index: identity)≙

 Queue_Leave(input1, item) ; Queue_Join(output, item)

 procedure Multiplexer_Transfer2 (value

 Multiplexer_index:identity)≙

 Queue_Leave(input2, item) ; Queue_Join(output, item)

 procedure Multiplexer_Transfer (value

 Multiplexer_index:identity)≙

 var r:ℕ, choose r∙ if r<1000 ∧ [|pre(Transfer1)|]
T
 →

 Multiplexer_Transfer1(Multiplexer_index) []

 r<1000 ∧ ¬[|pre(Transfer1)|]
T
 →

 Multiplexer_Transfer2(Multiplexer_index) []

 r>=1000 ∧ [|pre(Transfer2)|]
T
 →

 Multiplexer_Transfer2(Multiplexer_index) []

 r>=1000 ∧¬[|pre(Transfer2)|]
T
→

 Multiplexer_Transfer1(Multiplexer_index) fi

 end

Object framework is as follows:

type State_Object ≙

{Queue_reftab: identityQueue_state,

 Multiplexer_reftab: identity Multiplexer_state |

 (dom Queue_reftab ∩ dom Multiplexer_reftab) = Ø ∧

 (dom Queue_reftab ∪ dom Multiplexer_reftab) ⊆
 ran REF }

module object

 import Queue_synch, Multiplexer_synch

 var state:State_Object

 procedure Queue_new (value result obj:identity) ≙

 var r1

 state: [obj≠ Null ∧ obj ∉(dom Queue_reftab ∪ dom

 Multiplexer_reftab),

 ∃ r:Queue_state. r.self=obj ∧ r.Init ∧ state=

 {state0.Queue_reftab ∪ {obj ֏r},

 state0.Multiplexer_reftab } ∧ r1 = r] ; Queue_synch

 (obj, r1)

 procedure Multiplexer_new (value result obj:identity)

 ≙ var r1

 Queue_new(state0.input1);Queue_new(state0.input2);

 Queue_new(state1.output) ;state: [obj≠ Null ∧ obj

 ∉(dom Queue_reftab ∪ dom Multiplexer_reftab),

 ∃ r:Multiplexer_state. r.self=obj ∧ r.Init ∧ state=

 {state0.Multiplexer_reftab ∪ {obj ֏r},

 state0.Queue_reftab} ∧ r1 = r] ; Multiplexer_synch (obj,

 r1);

end

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a methodology for refinement of

OZ specifications using MRC. First, we proposed a translation

function for mapping OZ constructs into their MRC

counterparts, and then we modeled concept “object” in MRC.

Finally, we proposed how to model dynamic instantiation of

objects in MRC while OZ itself does not cover this facility. In

this way, in order to refining OZ specifications, one should

first map an OZ specification into its equivalent specification

in MRC using our translation function and our model of

concept “object”. Then, the resulting MRC specification can

be refined automatically using MRC refinement tools such as

RED.

Unlike existing animation approaches [1, 2, 3, 5, 6, 7, 8, 9,

10, 11, 12], our methodology pays attention to the correctness

using MRC refinement laws, and also our translation function

covers mapping of abbreviations, free types and basic types in

global. Comparing our methodology with the refinement

approach of [13, 14], our methodology supports fine-grained

refinement using MRC laws. Of course, Morgan’s Refinement

framework is open ended so that makes it easy to add coarse-

grained refinement laws (e.g. module refinement law) to it.

Finally, we can use tools such as RED to automate the

refinement of OZ specifications using MRC indirectly.
Nevertheless, some other constructs of OZ, such as

distributed operators, other cases of abbreviation definition

like when the right side of the abbreviation is in the form of

set definition, generic definition and finally other cases of free

types (when constructors are used in the definition), are still

open considering our mapping process.

In our future work, we are going to

1. extend our translation function in order to map the

remaining constructs of Object-Z,

2. show the applicability of our method using a new

case study including a larger subset of Object-Z,

3. show the automation of our methodology using one

of MRC tools such as RED, and finally

4. add refinement laws for module construct in MRC.

REFERENCES

[1] S. Ramkarthik, and C. Zhang, “Generating java skeletal code with

design contracts from specifications in a subset of object-z, “in 5th
IEEE/ACIS International Conference on Computer and Information

Science, , pp. 405-411, 2006.

[2] X.Ni, and C.Zhang, “Converting specifications in a subset of object-z to
skeletal spec# code for both static and dynamic analysis, “ in Journal of
Object Technology, Vol. 7, No. 8, pp.165-185, 2008.

[3] T.McComb, and G.Smith, “Animation of object-z specifications using a
z animator, “in First International Conference on Software Engineering

and Formal Methods, pp. 191-200, 2003.

[4] G. Smith, The Object-Z Specification Language: Advances in Formal
Methods, Kluwer Academic Publishers, 2000.

[5] R. Duke, and G. Rose, Formal Object-Oriented Specification Using

Object-Z, Macmillan, UK, 2000.
[6] G. Rafsanjani, and S. J. Colwill, “From object-z to c++: a structural

mapping,” in Z User Meeting (ZUM’92), Springer-Verlag, pp. 166-179,

1992.
[7] M. Fukagawa, T. Hikita, and H. Yamazaki, “A mapping system from

object-z to c++,” in 1st Asia-Pacific Software Engineering Conference

(APSEC94), IEEE Computer Society Press, pp. 220-228, 1994.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1355International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

[8] W. Johnston, and G. Rose,” Guidelines for the manual conversion of

object-z to c++, “ in SVRC Technical Report 93-14, 1993.
[9] M. Najafi, and H. Haghighi, “An animation approach to develop c++

code from object-z specifications, “ in International Symposium on

Computer Science and Software Engineering, pp. 9-16, 2011.
[10] C. Fischer, Combination and implementation of processes and data:

from csp-oz to java, PhD Thesis. University of Oldenburg, 2000.

[11] Z.Wang, M.Xia, and Y.Zhao, “Transform mechanisms of object-z based
formal specification to java,” in International Conference on

Computational Intelligence and Software Engineering, pp. 1-4, 2009.

[12] A. Griffiths, “From object-z to eiffel: a rigorous development method,”
in Technology of Object-Oriented Languages and Systems: TOOLS 18,

Prentice-Hall, 1995.

[13] J. Derrick, and E. A. Boiten, “Refinement of objects and operations in
object-z, “ in Formal Methods for Open Object-based Distributed

Systems IV, pp. 257-277, Kluwer Academic Publishers, 2000.

[14] J. Derrick, and E. A. Boiten, Refinement in z and object-z: foundations
and advanced applications, Formal Approaches to Computing and

Information Technology (FACIT), 1st edition, Springer-Verlag, 2001.

[15] C. Morgan, Programming from specifications, Prentice Hall, 1990.
[16] J. Woodcock, and J. Davies, Using z: specification, refinement, and

proof, Prentice-Hall, 1996.

[17] D. A. Carrington, and K. A. Robinson, “Tool support for the refinement
calculus, “in Computer-Aided Verification, Vol. 3 of DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, pp. 381-394,

American Mathematical Society, 1991.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:11, 2011

1356International Scholarly and Scientific Research & Innovation 5(11) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

11
, 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

10
0.

pd
f

