Search results for: sliding friction testing apparatus
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1593

Search results for: sliding friction testing apparatus

813 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

Authors: A. Mahdy

Abstract:

In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.

Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
812 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
811 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
810 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System

Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah

Abstract:

High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.

Keywords: High-speed transportation, Hyperloop, railways transportation, single-sided linear induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
809 PR Current Control with Harmonic Compensation in Grid Connected PV Inverters

Authors: Daniel Zammit, Cyril Spiteri Staines, Maurice Apap

Abstract:

This paper presents a study on Proportional Resonant (PR) current control with additional PR harmonic compensators for Grid Connected Photovoltaic (PV) Inverters. Both simulation and experimental results will be presented. Testing was carried out on a 3kW Grid-Connected PV Inverter which was designed and constructed for this research.

Keywords: Inverters, Proportional-Resonant Controllers, Harmonic Compensation, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3368
808 Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure

Authors: Ye. B. Utepov, A. S. Tulebekova, A. B. Kazkeyev

Abstract:

Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it the transition boundaries form elliptical forms were determined. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in the future work.

Keywords: Heat map, placement strategy, temperature and relative humidity, wireless embedded sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326
807 Analyzing the Plausible Alternatives in Contracting the Societal Fissure Caused by Digital Divide in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

'Digital Divide' is a concept that has existed in this paradigm ever since the discovery of the first-generation technologies. Before the turn of the century, it was basically used to describe the gap between those with telephone communication access and those without it. At present, it is plainly descriptive in itself to illustrate the cavity among those with Internet access and those without. Though the concept of digital divide has been merely lying in sight for as long as time itself, the friction it caused has not yet been fully realized to solve major crisis situations. Unlike well-developed countries, Sri Lanka is still in the verge of moving farther away from a developing country in the race towards reaching a developed state. Access to technological resources varies from region to region, even within the island itself, with one region having a considerable percentage of its community exposed to the Internet and its related technologies, and the other unaware of such. Thus, this paper intends to analyze the roots for the still-extant gap instigated based on the concept of ‘Digital Divide’ and explores the plausible potentials that could be brought about by narrowing this prevailing percentage among the population, specifically entrenching the advantages reaped towards an economic augmentation and culture or lifestyle revolution on the path towards development.

Keywords: Communication, digital divide, society, Sri Lanka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
806 Neural Network Control of a Biped Robot Model with Composite Adaptation Low

Authors: Ahmad Forouzantabar

Abstract:

this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.

Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
805 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: Dam, failure, limit-state, Monte Carlo simulation, reliability, probability, simulation, sliding, Taylor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
804 Thermal Treatments and Characteristics Study On Unalloyed Structural (AISI 1140) Steel

Authors: S. S. Sharma, P. R. Prabhu, Rajagopal Chadaga

Abstract:

The main emphasis of metallurgists has been to process the materials to obtain the balanced mechanical properties for the given application. One of the processing routes to alter the properties is heat treatment. Nearly 90% of the structural applications are related to the medium carbon an alloyed steels and hence are regarded as structural steels. The major requirement in the conventional steel is to improve workability, toughness, hardness and grain refinement. In this view, it is proposed to study the mechanical and tribological properties of unalloyed structural (AISI 1140) steel with different thermal (heat) treatments like annealing, normalizing, tempering and hardening and compared with as brought (cold worked) specimen. All heat treatments are carried out in atmospheric condition. Hardening treatment improves hardness of the material, a marginal decrease in hardness value with improved ductility is observed in tempering. Annealing and normalizing improve ductility of the specimen. Normalized specimen shows ultimate ductility. Hardened specimen shows highest wear resistance in the initial period of slide wear where as above 25KM of sliding distance, as brought steel dominates the hardened specimen. Both mild and severe wear regions are observed. Microstructural analysis shows the existence of pearlitic structure in normalized specimen, lath martensitic structure in hardened, pearlitic, ferritic structure in annealed specimen.

Keywords: Annealing, hardness, heat treatment, normalizing, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
803 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method

Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung

Abstract:

This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.

Keywords: Weir, Finite Element, Infinite Element, Nonlinear, Earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
802 Battery/Supercapacitor Emulator for Chargers Functionality Testing

Authors: S. Farag, A. Kupeman

Abstract:

In this paper, design of solid-state battery/supercapacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low- level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.

Keywords: Battery, Charger, Energy, Storage, Supercapacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
801 Development of a Simple laser-based 2D Compensating System for the Contouring Accuracy of Machine Tools

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Ming-Chen Cho

Abstract:

The dynamical contouring error is a critical element for the accuracy of machine tools. The contouring error is defined as the difference between the processing actual path and commanded path, which is implemented by following the command curves from feeding driving system in machine tools. The contouring error is resulted from various factors, such as the external loads, friction, inertia moment, feed rate, speed control, servo control, and etc. Thus, the study proposes a 2D compensating system for the contouring accuracy of machine tools. Optical method is adopted by using stable frequency laser diode and the high precision position sensor detector (PSD) to performno-contact measurement. Results show the related accuracy of position sensor detector (PSD) of 2D contouring accuracy compensating system was ±1.5 μm for a calculated range of ±3 mm, and improvement accuracy is over 80% at high-speed feed rate.

Keywords: Position sensor detector, laser diode, contouring accuracy, machine tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
800 3D Frictionless Contact Case between the Structure of E-Bike and the Ground

Authors: Lele Zhang, HuiLeng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improvedsafety structure of e-bike will be confirmed with experimental data.

Keywords: Frictionless contact, penalty method, e-bike, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
799 Comparative Evaluation of Ice Adhesion Behavior

Authors: T. Strobl, D. Raps, M. Hornung

Abstract:

In this study, the adhesion of ice to solid substrates with different surface properties is compared. Clear ice, similar to atmospheric in-flight icing encounters, is accreted on the different substrates under controlled conditions. The ice adhesion behavior is investigated by means of a dynamic vibration testing technique with an electromagnetic shaker initiating ice de-bonding in the interface between the substrate and the ice. The results of the experiments reveal that the affinity for ice accretion is significantly influenced by the water contact angle of the respective sample.

Keywords: Contact angle, dynamic vibration measurement, ice adhesion, interfacial shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
798 Reduction of Emissions of Nitrogen Oxides from Traffic

Authors: Frantisek Bozek, Jiri Dvorak, Jaromir Mares, Hana Malachova

Abstract:

The value of emission factor was calculated in the older type of Diesel engine operating on an engine testing bench and then compared with the parameters monitored under similar conditions when the EnviroxTM additive was applied. It has been found out that the additive based on CeO2 nanoparticles reduces emission of NOx. The dependencies of NOx emissions on reduced torque, engine power and revolutions have been observed as well.

Keywords: Additive, air, cerium dioxide, emission factor, emissions, nanoparticles, nitrogen oxides

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
797 Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite

Authors: M. D. Stelescu, E. Manaila, G. Pelin, M. Georgescu, M. Sonmez

Abstract:

This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.

Keywords: Chlorobutyl rubber, ethylene-propylene-diene terpolymers, montmorillonite, rubber seals, space application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
796 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
795 Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating

Authors: Inwon Lee, Victor M. Kulik, Andrey V. Boiko, Ho Hwan Chun

Abstract:

A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.

Keywords: boundary layer, compliant coating, drag reduction, hot wire, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
794 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: Dam-break flows, deformable beds, finite element method, finite volume method, linear elasticity, Shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
793 Comparison of the Dynamic Characteristics of Active and Passive Hybrid Bearings

Authors: Denis V. Shutin, Alexander Yu. Babin, Leonid A. Savin

Abstract:

One of the ways of reducing vibroactivity of rotor systems is to apply active hybrid bearings. Their design allows correction of the rotor’s location by means of separately controlling the supply pressure of the lubricant into the friction area. In a most simple case, the control system is based on a P-regulator. Increase of the gain coefficient allows decreasing the amplitude of rotor’s vibrations. The same effect can be achieved by means of increasing the pressure in the collector of a traditional passive hybrid bearing. However, these approaches affect the dynamic characteristics of the bearing differently. Theoretical studies show that the increase of the gain coefficient of an active bearing increases the stiffness of the bearing, as well as the increase of the pressure in the collector. Nevertheless, in case of a passive bearing, the damping properties deteriorate, whereas the active hybrid bearings obtain higher damping properties, which allow effectively providing the energy dissipation of the rotor vibrations and reducing the load on the constructional elements of a machine.

Keywords: Active bearings, control system, damping, hybrid bearings, stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
792 Optimizing Usability Testing with Collaborative Method in an E-Commerce Ecosystem

Authors: Markandeya Kunchi

Abstract:

Usability testing (UT) is one of the vital steps in the User-centred design (UCD) process when designing a product. In an e-commerce ecosystem, UT becomes primary as new products, features, and services are launched very frequently. And, there are losses attached to the company if an unusable and inefficient product is put out to market and is rejected by customers. This paper tries to answer why UT is important in the product life-cycle of an E-commerce ecosystem. Secondary user research was conducted to find out work patterns, development methods, type of stakeholders, and technology constraints, etc. of a typical E-commerce company. Qualitative user interviews were conducted with product managers and designers to find out the structure, project planning, product management method and role of the design team in a mid-level company. The paper tries to address the usual apprehensions of the company to inculcate UT within the team. As well, it stresses upon factors like monetary resources, lack of usability expert, narrow timelines, and lack of understanding of higher management as some primary reasons. Outsourcing UT to vendors is also very prevalent with mid-level e-commerce companies, but it has its own severe repercussions like very little team involvement, huge cost, misinterpretation of the findings, elongated timelines, and lack of empathy towards the customer, etc. The shortfalls of the unavailability of a UT process in place within the team and conducting UT through vendors are bad user experiences for customers while interacting with the product, badly designed products which are neither useful and nor utilitarian. As a result, companies see dipping conversions rates in apps and websites, huge bounce rates and increased uninstall rates. Thus, there was a need for a more lean UT system in place which could solve all these issues for the company. This paper highlights on optimizing the UT process with a collaborative method. The degree of optimization and structure of collaborative method is the highlight of this paper. Collaborative method of UT is one in which the centralised design team of the company takes for conducting and analysing the UT. The UT is usually a formative kind where designers take findings into account and uses in the ideation process. The success of collaborative method of UT is due to its ability to sync with the product management method employed by the company or team. The collaborative methods focus on engaging various teams (design, marketing, product, administration, IT, etc.) each with its own defined roles and responsibility in conducting a smooth UT with users In-house. The paper finally highlights the positive results of collaborative UT method after conducting more than 100 In-lab interviews with users across the different lines of businesses. Some of which are the improvement of interaction between stakeholders and the design team, empathy towards users, improved design iteration, better sanity check of design solutions, optimization of time and money, effective and efficient design solution. The future scope of collaborative UT is to make this method leaner, by reducing the number of days to complete the entire project starting from planning between teams to publishing the UT report.

Keywords: Usability testing, collaborative method, e-commerce, product management method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
791 Determination of Electromagnetic Properties of Human Tissues

Authors: Iliana Marinova, Valentin Mateev

Abstract:

In this paper a computer system for electromagnetic properties measurements is designed. The system employs Agilent 4294A precision impedance analyzer to measure the amplitude and the phase of a signal applied over a tested biological tissue sample. Measured by the developed computer system data could be used for tissue characterization in wide frequency range from 40Hz to 110MHz. The computer system can interface with output devices acquiring flexible testing process.

Keywords: Electromagnetic properties, human tissue, bioimpedance, measurement system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
790 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
789 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff

Abstract:

Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.

Keywords: Coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
788 In vitro Studies of Mucoadhesiveness and Release of Nicotinamide Oral Gels Prepared from Bioadhesive Polymers

Authors: Sarunyoo Songkro, Naranut Rajatasereekul, Nipapat Cheewasrirungrueng

Abstract:

The aim of the present study was to evaluate the mucoadhesion and the release of nicotinamide gel formulations using in vitro methods. An agar plate technique was used to investigate the adhesiveness of the gels whereas a diffusion apparatus was employed to determine the release of nicotinamide from the gels. In this respect, 10% w/w nicotinamide gels containing bioadhesive polymers: Carbopol 934P (0.5-2% w/w), hydroxypropylmethyl cellulose (HPMC) (4-10% w/w), sodium carboxymethyl cellulose (SCMC) (4-6% w/w) and methylcellulose 4000 (MC) (3-5% w/w) were prepared. The gel formulations had pH values in the range of 7.14 - 8.17, which were considered appropriate to oral mucosa application. In general, the rank order of pH values appeared to be SCMC > MC4000 > HPMC > Carbopol 934P. Types and concentrations of polymers used somewhat affected the adhesiveness. It was found that anionic polymers (Carbopol 934 and SCMC) adhered more firmly to the agar plate than the neutral polymers (HPMC and MC 4000). The formulation containing 0.5% Carbopol 934P (F1) showed the highest release rate. With the exception of the formulation F1, the neutral polymers tended to give higher relate rates than the anionic polymers. For oral tissue treatment, the optimum has to be balanced between the residence time (adhesiveness) of the formulations and the release rate of the drug. The formulations containing the anionic polymers: Carbopol 934P or SCMC possessed suitable physical properties (appearance, pH and viscosity). In addition, for anionic polymer formulations, justifiable mucoadhesive properties and reasonable release rates of nicotinamide were achieved. Accordingly, these gel formulations may be applied for the treatment of oral mucosal lesions.

Keywords: Nicotinamide, bioadhesive polymer, mucoadhesiveness, release rate, gel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
787 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection

Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf

Abstract:

Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.

Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
786 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink

Authors: Bandaris Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.

Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3193
785 Functionality of Negotiation Agent on Value-based Design Decision

Authors: Arazi Idrus, Christiono Utomo

Abstract:

This paper presents functionality of negotiation agent on value-based design decision. The functionality is based on the characteristics of the system and goal specification. A Prometheus Design Tool model was used for developing the system. Group functionality will be the attribute for negotiation agents, which comprises a coordinator agent and decision- maker agent. The results of the testing of the system to a building system selection on valuebased decision environment are also presented.

Keywords: Functionality, negotiation agent, value-baseddecision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
784 Contextual SenSe Model: Word Sense Disambiguation Using Sense and Sense Value of Context Surrounding the Target

Authors: Vishal Raj, Noorhan Abbas

Abstract:

Ambiguity in NLP (Natural Language Processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a method to create an affinity matrix to calculate the affinity between any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an algorithm to create the sense clusters of tokens using affinity matrix under hierarchy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contextual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and challenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.

Keywords: Word Sense Disambiguation, WSD, Contextual SenSe Model, Most Frequent Sense, part of speech, POS, Natural Language Processing, NLP, OOV, out of vocabulary, ELMo, Embeddings from Language Model, BERT, Bidirectional Encoder Representations from Transformers, Word2Vec, lemma_POS, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274