Search results for: sequence mining
278 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company
Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.
Keywords: GeG Company, maintainability, maintenance costs, reliability-center-maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717277 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058276 A Social Decision Support Mechanism for Group Purchasing
Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh
Abstract:
With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.
Keywords: Social network, group decision, text mining, group commerce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390275 Low Complexity Peak-to-Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System by Simultaneously Applying Partial Transmit Sequence and Clipping Algorithms
Authors: V. Sudha, D. Sriram Kumar
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) has been used in many advanced wireless communication systems due to its high spectral efficiency and robustness to frequency selective fading channels. However, the major concern with OFDM system is the high peak-to-average power ratio (PAPR) of the transmitted signal. Some of the popular techniques used for PAPR reduction in OFDM system are conventional partial transmit sequences (CPTS) and clipping. In this paper, a parallel combination/hybrid scheme of PAPR reduction using clipping and CPTS algorithms is proposed. The proposed method intelligently applies both the algorithms in order to reduce both PAPR as well as computational complexity. The proposed scheme slightly degrades bit error rate (BER) performance due to clipping operation and it can be reduced by selecting an appropriate value of the clipping ratio (CR). The simulation results show that the proposed algorithm achieves significant PAPR reduction with much reduced computational complexity.
Keywords: CCDF, OFDM, PAPR, PTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368274 Stabilizer Fillet Weld Strength under Multiaxial Loading (Effect of Force, Size and Residual Stress)
Authors: Iman Hadipour, Javad Marzbanrad
Abstract:
In this paper, the strength of a stabilizer is determined when the static and fatigue multiaxial loading are applied. Stabilizer is a part of suspension system in the heavy truck for stabilizing the cabin against the vibration of the road which composes of a thin-walled tube joined to a forge component by fillet weld. The component is loaded by non proportional random sequence of torsion and bending. Residual stress of welding process is considered here for static loading. This static loading with road irregularities are applied in this study as fatigue case that can affected in the fillet welded area of this part. The stresses in the welded structure are calculated using FEA. In addition, the fatigue with multi axial loading in the fillet weld is also investigated and the critical zone of the stabilizer is specified and presented by graphs. Residual stresses that have been resulted by the thermal forces are considered in FEA. Force increasing is the element of finding the critical point of the component.Keywords: Fillet weld, fatigue, weld toe crack, weld root crack, S-N curve, multiaxial load, residual stress, combined force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065273 Introduction of Hyperaccumulator Plants with Phytoremediation Potential of a Lead- Zinc Mine in Iran
Authors: M. Cheraghi, B. Lorestani, N. Yousefi
Abstract:
Contamination of heavy metals represents one of the most pressing threats to water and soil resources as well as human health. Phytoremediation can be potentially used to remediate metalcontaminated sites. A major step towards the development of phytoremediation of heavy metal impacted soils is the discovery of the heavy metal hyperaccumulation in plants. In this study, the several established criteria to define a hyperaccumulator plant were applied. The case study was represented by a mining area in Hamedan province in the central west part of Iran. Obtained results showed that the most of sampled species were able to grow on heavily metal-contaminated soils and also were able to accumulate extraordinarily high concentrations of some metals such as Zn, Mn, Cu, Pb and Fe. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of some measured heavy metals and, therefore, they have suitable potential for phytoremediation of contaminated soils.Keywords: Enrichment factor, Heavy metals, Hyperaccumulator, Phytoremediation, Translocation factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884272 Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite
Authors: S. Srinivasa Moorthy, K. Manonmani
Abstract:
The new, polymer composites consisting of e-glass fiber reinforcement with titanium oxide filler in the double bonded unsaturated polyester resin matrix were made. The glass fiber and titanium oxide reinforcement composites were made in three different fiber lengths (3cm, 5cm, and 7cm), filler content (2 wt%, 4 wt%, and 6 wt%) and fiber content (20 wt%, 40 wt%, and 60 wt%). 27 different compositions were fabricated and a sequence of experiments were carried out to determine tensile strength and impact strength. The vital influencing factors fiber length, fiber content and filler content were chosen as 3 factors in 3 levels of Taguchi’s L9 orthogonal array. The influences of parameters were determined for tensile strength and impact strength by Analysis of variance (ANOVA) and S/N ratio. Using Artificial Neural Network (ANN) an expert system was devised to predict the properties of hybrid reinforcement GFRP composites. The predict models were experimentally proved with the maximum coincidence.
Keywords: Analysis of variance (ANOVA), Artificial neural network (ANN), Polymer composites, Taguchi’s orthogonal array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400271 Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran
Authors: Samira Malekmohammadi Golsefid, Mehdi Ghazanfari, Somayeh Alizadeh
Abstract:
The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.Keywords: Customers segmentation, Customer relationship management, Clustering, Data Mining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287270 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data
Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz
Abstract:
The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.Keywords: Data clustering, medical data, principal components analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501269 Forecasting Fraudulent Financial Statements using Data Mining
Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas
Abstract:
This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.Keywords: Machine learning, stacking, classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053268 An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.Keywords: Fast search, Copy detection, Adjacent pixel intensity difference quantization (APIDQ), DC image, Histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450267 Post Occupancy Life Cycle Analysis of a Green Building Energy Consumption at the University of Western Ontario in London - Canada
Authors: M. Bittencourt, E. K. Yanful, D. Velasquez, A. E. Jungles
Abstract:
The CMLP building was developed to be a model for sustainability with strategies to reduce water, energy and pollution, and to provide a healthy environment for the building occupants. The aim of this paper is to investigate the environmental effects of energy used by this building. A LCA (life cycle analysis) was led to measure the real environmental effects produced by the use of energy. The impact categories most affected by the energy use were found to be the human health effects, as well as ecotoxicity. Natural gas extraction, uranium milling for nuclear energy production, and the blasting for mining and infrastructure construction are the processes contributing the most to emissions in the human health effect. Data comparing LCA results of CMLP building with a conventional building results showed that energy used by the CMLP building has less damage for the environment and human health than a conventional building.Keywords: Environmental Impacts, Green buildings, Life CycleAnalysis, Sustainability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773266 Correlation-based Feature Selection using Ant Colony Optimization
Authors: M. Sadeghzadeh, M. Teshnehlab
Abstract:
Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.
Keywords: Ant colony optimization, Classification, Datamining, Feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420265 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation
Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana
Abstract:
In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4433264 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis
Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem
Abstract:
Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic ABSA approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.
Keywords: Sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463263 Analysis of Diverse Cluster Ensemble Techniques
Authors: S. Sarumathi, N. Shanthi, P. Ranjetha
Abstract:
Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.Keywords: Cluster Ensemble, Consensus Function, CSPA, Diversity, HGPA, MCLA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841262 A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems
Authors: Nahid Ardalani, Ahmadreza Khoogar, H. Roohi
Abstract:
In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.Keywords: Power control, neural networks, DS/CDMA mobilecommunication systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515261 Case Studies of CSAMT Method Applied to Study of Complex Rock Mass Structure and Hidden Tectonic
Authors: Yuxin Chen, Qingyun Di, C. Dinis da Gama
Abstract:
In projects like waterpower, transportation and mining, etc., proving up the rock-mass structure and hidden tectonic to estimate the geological body-s activity is very important. Integrating the seismic results, drilling and trenching data, CSAMT method was carried out at a planning dame site in southwest China to evaluate the stability of a deformation. 2D and imitated 3D inversion resistivity results of CSAMT method were analyzed. The results indicated that CSAMT was an effective method for defining an outline of deformation body to several hundred meters deep; the Lung Pan Deformation was stable in natural conditions; but uncertain after the future reservoir was impounded. This research presents a good case study of the fine surveying and research on complex geological structure and hidden tectonic in engineering project.Keywords: CSAMT Surveying, Deformation Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447260 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.
Keywords: Data mining, Korean linguistic feature, literary fiction, relationship extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795259 Value Analysis of Islamic Banking and Conventional Banking to Measure Value Co-creation
Authors: Amna Javed, Hisashi Masuda, Youji Kohda
Abstract:
This study examines the value analysis in Islamic and conventional banking services in Pakistan. Many scholars have focused on co-creation of values in services but mainly economic values not non-economic.
Keywords: Economic values, Islamic banking, Non-economic values, Value system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257258 Optimal Channel Equalization for MIMO Time-Varying Channels
Authors: Ehab F. Badran, Guoxiang Gu
Abstract:
We consider optimal channel equalization for MIMO (multi-input/multi-output) time-varying channels in the sense of MMSE (minimum mean-squared-error), where the observation noise can be non-stationary. We show that all ZF (zero-forcing) receivers can be parameterized in an affine form which eliminates completely the ISI (inter-symbol-interference), and optimal channel equalizers can be designed through minimization of the MSE (mean-squarederror) between the detected signals and the transmitted signals, among all ZF receivers. We demonstrate that the optimal channel equalizer is a modified Kalman filter, and show that under the AWGN (additive white Gaussian noise) assumption, the proposed optimal channel equalizer minimizes the BER (bit error rate) among all possible ZF receivers. Our results are applicable to optimal channel equalization for DWMT (discrete wavelet multitone), multirate transmultiplexers, OFDM (orthogonal frequency division multiplexing), and DS (direct sequence) CDMA (code division multiple access) wireless data communication systems. A design algorithm for optimal channel equalization is developed, and several simulation examples are worked out to illustrate the proposed design algorithm.Keywords: Channel equalization, Kalman filtering, Time-varying systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834257 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942256 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.
Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547255 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.
Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50254 Fe, Pb, Mn, and Cd Concentrations in Edible Mushrooms (Agaricus campestris) Grown in Abakaliki, Ebonyi State, Nigeria
Authors: N. O. Omaka, I. F. Offor, R.C. Ehiri
Abstract:
The health and environmental risk of eating mushrooms grown in Abakaliki were evaluated in terms of heavy metals accumulation. Mushroom samples were collected from four different farms located at Izzi, Amajim, Amana and Amudo and analyzed for (iron, lead, manganese and cadmium) using Bulk Scientific Atomic Absorption Spectrophotometer 205. Results indicates mean range of concentrations of the trace metals in the mushrooms were Fe (0.22-152. 03), Mn (0.74-9.76), Pb (0.01.0.80), Cd (0.61-0.82) mg/L respectively. Accumulation of Cd on the four locations under investigation was higher than the UK Government Food Science Surveillance and World Health Organization maximum recommended levels in mushroom for human consumption. The Fe and Mn contaminants of Amudo were significant and show the impact of anthropogenic/atmospheric pollution. The potential sources of the heavy metals in the mushrooms were from urban waste, dust from mining and quarrying activities, natural geochemistry of the area, and use of inorganic fertilizers
Keywords: Agaricus campestris, edible, health implication heavy metal, mushroom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564253 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company
Authors: Iman Atighi, Jalal Soleimannejad, Ahmad Akbarinasab, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.
Keywords: Golgohar Iron Ore Mining & Industrial Company, maintainability, maintenance costs, reliability-center-maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656252 Pattern Recognition Techniques Applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.
Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360251 Physical Activity and Cognitive Functioning Relationship in Children
Authors: Comfort Mokgothu
Abstract:
This study investigated the relation between processing information and fitness level of active (fit) and sedentary (unfit) children drawn from rural and urban areas in Botswana. It was hypothesized that fit children would display faster simple reaction time (SRT), choice reaction times (CRT) and movement times (SMT). 60, third grade children (7.0 – 9.0 years) were initially selected and based upon fitness testing, 45 participated in the study (15 each of fit urban, unfit urban, fit rural). All children completed anthropometric measures, skinfold testing and submaximal cycle ergometer testing. The cognitive testing included SRT, CRT, SMT and Choice Movement Time (CMT) and memory sequence length. Results indicated that the rural fit group exhibited faster SMT than the urban fit and unfit groups. For CRT, both fit groups were faster than the unfit group. Collectively, the study shows that the relationship that exists between physical fitness and cognitive function amongst the elderly can tentatively be extended to the pediatric population. Physical fitness could be a factor in the speed at which we process information, including decision making, even in children.
Keywords: Decision making, fitness, information processing, reaction time, cognition movement time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793250 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm
Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931249 Artificial Intelligence Techniques applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425