Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 418

Search results for: Cluster Ensemble

418 Analysis of Diverse Cluster Ensemble Techniques

Authors: S. Sarumathi, N. Shanthi, P. Ranjetha

Abstract:

Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.

Keywords: Cluster Ensemble, Consensus Function, CSPA, Diversity, HGPA, MCLA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
417 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.

Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
416 A Review and Comparative Analysis on Cluster Ensemble Methods

Authors: S. Sarumathi, P. Ranjetha, C. Saraswathy, M. Vaishnavi, S. Geetha

Abstract:

Clustering is an unsupervised learning technique for aggregating data objects into meaningful classes so that intra cluster similarity is maximized and inter cluster similarity is minimized in data mining. However, no single clustering algorithm proves to be the most effective in producing the best result. As a result, a new challenging technique known as the cluster ensemble approach has blossomed in order to determine the solution to this problem. For the cluster analysis issue, this new technique is a successful approach. The cluster ensemble's main goal is to combine similar clustering solutions in a way that achieves the precision while also improving the quality of individual data clustering. Because of the massive and rapid creation of new approaches in the field of data mining, the ongoing interest in inventing novel algorithms necessitates a thorough examination of current techniques and future innovation. This paper presents a comparative analysis of various cluster ensemble approaches, including their methodologies, formal working process, and standard accuracy and error rates. As a result, the society of clustering practitioners will benefit from this exploratory and clear research, which will aid in determining the most appropriate solution to the problem at hand.

Keywords: Clustering, cluster ensemble methods, consensus function, data mining, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126
415 A Comprehensive Review on Different Mixed Data Clustering Ensemble Methods

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

An extensive amount of work has been done in data clustering research under the unsupervised learning technique in Data Mining during the past two decades. Moreover, several approaches and methods have been emerged focusing on clustering diverse data types, features of cluster models and similarity rates of clusters. However, none of the single clustering algorithm exemplifies its best nature in extracting efficient clusters. Consequently, in order to rectify this issue, a new challenging technique called Cluster Ensemble method was bloomed. This new approach tends to be the alternative method for the cluster analysis problem. The main objective of the Cluster Ensemble is to aggregate the diverse clustering solutions in such a way to attain accuracy and also to improve the eminence the individual clustering algorithms. Due to the massive and rapid development of new methods in the globe of data mining, it is highly mandatory to scrutinize a vital analysis of existing techniques and the future novelty. This paper shows the comparative analysis of different cluster ensemble methods along with their methodologies and salient features. Henceforth this unambiguous analysis will be very useful for the society of clustering experts and also helps in deciding the most appropriate one to resolve the problem in hand.

Keywords: Clustering, Cluster Ensemble Methods, Coassociation matrix, Consensus Function, Median Partition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
414 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: Data mining, ensemble, radial basis function, support vector machine, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
413 Judges System for Classifiers Specialization

Authors: Abdel Rodríguez, Isis Bonet, Ricardo Grau, María M. García

Abstract:

In this paper we designed and implemented a new ensemble of classifiers based on a sequence of classifiers which were specialized in regions of the training dataset where errors of its trained homologous are concentrated. In order to separate this regions, and to determine the aptitude of each classifier to properly respond to a new case, it was used another set of classifiers built hierarchically. We explored a selection based variant to combine the base classifiers. We validated this model with different base classifiers using 37 training datasets. It was carried out a statistical comparison of these models with the well known Bagging and Boosting, obtaining significantly superior results with the hierarchical ensemble using Multilayer Perceptron as base classifier. Therefore, we demonstrated the efficacy of the proposed ensemble, as well as its applicability to general problems.

Keywords: classifiers, delegation, ensemble

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
412 Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting

Authors: A. Chaouachi, R.M. Kamel, R. Ichikawa, H. Hayashi, K. Nagasaka

Abstract:

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.

Keywords: Neural network ensemble, Solar power generation, 24 hour forecasting, Comparative study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
411 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332
410 Ensemble Learning with Decision Tree for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

In recent years, a number of works proposing the combination of multiple classifiers to produce a single classification have been reported in remote sensing literature. The resulting classifier, referred to as an ensemble classifier, is generally found to be more accurate than any of the individual classifiers making up the ensemble. As accuracy is the primary concern, much of the research in the field of land cover classification is focused on improving classification accuracy. This study compares the performance of four ensemble approaches (boosting, bagging, DECORATE and random subspace) with a univariate decision tree as base classifier. Two training datasets, one without ant noise and other with 20 percent noise was used to judge the performance of different ensemble approaches. Results with noise free data set suggest an improvement of about 4% in classification accuracy with all ensemble approaches in comparison to the results provided by univariate decision tree classifier. Highest classification accuracy of 87.43% was achieved by boosted decision tree. A comparison of results with noisy data set suggests that bagging, DECORATE and random subspace approaches works well with this data whereas the performance of boosted decision tree degrades and a classification accuracy of 79.7% is achieved which is even lower than that is achieved (i.e. 80.02%) by using unboosted decision tree classifier.

Keywords: Ensemble learning, decision tree, remote sensingclassification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
409 An Experimental Study of a Self-Supervised Classifier Ensemble

Authors: Neamat El Gayar

Abstract:

Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.

Keywords: Multiple Classifier Systems, classifier ensembles, learning using labeled and unlabelled data, K-nearest neighbor classifier, Bayes classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
408 Combining Bagging and Additive Regression

Authors: Sotiris B. Kotsiantis

Abstract:

Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.

Keywords: Regressors, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
407 An ensemble of Weighted Support Vector Machines for Ordinal Regression

Authors: Willem Waegeman, Luc Boullart

Abstract:

Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM-s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach is comparable to state of the art kernel methods for ordinal regression. The ensemble method, which is straightforward to implement, provides a very good sensitivity-specificity trade-off for the highest and lowest rank.

Keywords: Ordinal regression, support vector machines, ensemblelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
406 Achieving High Availability by Implementing Beowulf Cluster

Authors: A.F.A. Abidin, N.S.M. Usop

Abstract:

A computer cluster is a group of tightly coupled computers that work together closely so that in many respects they can be viewed as though they are a single computer. The components of a cluster are commonly, but not always, connected to each other through fast local area networks. Clusters are usually deployed to improve performance and/or availability over that provided by a single computer, while typically being much more cost-effective than single computers of comparable speed or availability. This paper proposed the way to implement the Beowulf Cluster in order to achieve high performance as well as high availability.

Keywords: Beowulf Cluster, grid computing, GridMPI, MPICH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
405 Developing of Thai Classical Music Ensemble in Rattanakosin Period

Authors: Pansak Vandee

Abstract:

The research titled “Developing of Thai Classical Music Ensemble in Rattanakosin Period" aimed 1) to study the history of Thai Classical Music Ensemble in Rattanakosin Period and 2) to analyze changing in each period of Rattanakosin Era. This is the historical and documentary research. The data was collected by in-depth interview those musicians, and academic music experts and field study. The focus group discussion was conducted to analyze and conclude the findings. The research found that the history of Thai Classical Music Ensemble in Rattanakosin Period derived from the Ayutthaya period. Thai classical music ensemble consisted of “Wong Pipat", “Wong Mahori", “Wong Kreang Sai". “Wong Kubmai", “Wong Krongkak", “Brass Band", and “Kan Band" which were used to ceremony, ritual, drama, performs and entertainment. Changed of the Thai music in the early Rattanakosin Period were passed from the Ayutthaya Period and the influence of the western civilization. New Band formed in Thai Music were “Orchestra" and “Contemporary Band". The role of Thai music was changed from the ceremonial rituals to entertainment. Development of the Thai music during the reign of King Rama 1 to King Rama 7, was improved from the court. But after the revolution, the musical patronage of the court was maintained by the Government. Thai Classical Music Ensemble were performed to be standard pattern.

Keywords: Development, Rattanakosin Period, Thai Classical Music Ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
404 The Application of an Ensemble of Boosted Elman Networks to Time Series Prediction: A Benchmark Study

Authors: Chee Peng Lim, Wei Yee Goh

Abstract:

In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.

Keywords: AdaBoost, Elman network, neural network ensemble, time series regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
403 Fast and Accuracy Control Chart Pattern Recognition using a New cluster-k-Nearest Neighbor

Authors: Samir Brahim Belhaouari

Abstract:

By taking advantage of both k-NN which is highly accurate and K-means cluster which is able to reduce the time of classification, we can introduce Cluster-k-Nearest Neighbor as "variable k"-NN dealing with the centroid or mean point of all subclasses generated by clustering algorithm. In general the algorithm of K-means cluster is not stable, in term of accuracy, for that reason we develop another algorithm for clustering our space which gives a higher accuracy than K-means cluster, less subclass number, stability and bounded time of classification with respect to the variable data size. We find between 96% and 99.7 % of accuracy in the lassification of 6 different types of Time series by using K-means cluster algorithm and we find 99.7% by using the new clustering algorithm.

Keywords: Pattern recognition, Time series, k-Nearest Neighbor, k-means cluster, Gaussian Mixture Model, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
402 LINUX Cluster Possibilities in 3-D PHOTO Quality Imaging and Animation

Authors: Arjun Jain, Himanshu Agrawal, Nalini Vasudevan

Abstract:

In this paper we present the PC cluster built at R.V. College of Engineering (with great help from the Department of Computer Science and Electrical Engineering). The structure of the cluster is described and the performance is evaluated by rendering of complex 3D Persistence of Vision (POV) images by the Ray-Tracing algorithm. Here, we propose an unexampled method to render such images, distributedly on a low cost scalable.

Keywords: PC cluster, parallel computations, ray tracing, persistence of vision, rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
401 Clinical Decision Support for Disease Classification based on the Tests Association

Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon

Abstract:

Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.

Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
400 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

This paper introduces an original method for guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers is relevant in multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.

Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
399 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
398 Solving Facility Location Problem on Cluster Computing

Authors: Ei Phyo Wai, Nay Min Tun

Abstract:

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Keywords: cluster, cost, demand, facility location

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
397 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods

Authors: Adel Aloraini

Abstract:

Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.

Keywords: Causal interactions , banks, feature selection, regularizere,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
396 Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang

Abstract:

The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.

Keywords: PC cluster, automated deployment, cluster computing, PC classroom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
395 Implementation of Watch Dog Timer for Fault Tolerant Computing on Cluster Server

Authors: Meenakshi Bheevgade, Rajendra M. Patrikar

Abstract:

In today-s new technology era, cluster has become a necessity for the modern computing and data applications since many applications take more time (even days or months) for computation. Although after parallelization, computation speeds up, still time required for much application can be more. Thus, reliability of the cluster becomes very important issue and implementation of fault tolerant mechanism becomes essential. The difficulty in designing a fault tolerant cluster system increases with the difficulties of various failures. The most imperative obsession is that the algorithm, which avoids a simple failure in a system, must tolerate the more severe failures. In this paper, we implemented the theory of watchdog timer in a parallel environment, to take care of failures. Implementation of simple algorithm in our project helps us to take care of different types of failures; consequently, we found that the reliability of this cluster improves.

Keywords: Cluster, Fault tolerant, Grid, Grid ComputingSystem, Meta-computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
394 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks

Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.

Abstract:

The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.

Keywords: Clusters, fuzzy and optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
393 Scalable Deployment and Configuration of High-Performance Virtual Clusters

Authors: Kyrre M Begnum, Matthew Disney

Abstract:

Virtualization and high performance computing have been discussed from a performance perspective in recent publications. We present and discuss a flexible and efficient approach to the management of virtual clusters. A virtual machine management tool is extended to function as a fabric for cluster deployment and management. We show how features such as saving the state of a running cluster can be used to avoid disruption. We also compare our approach to the traditional methods of cluster deployment and present benchmarks which illustrate the efficiency of our approach.

Keywords: Cluster management, clusters, high-performance, virtual machines, Xen

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
392 Location Based Clustering in Wireless Sensor Networks

Authors: Ashok Kumar, Narottam Chand, Vinod Kumar

Abstract:

Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.

Keywords: Wireless sensor networks, clustering, energy efficient, localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
391 Dominating Set Algorithm and Trust Evaluation Scheme for Secured Cluster Formation and Data Transferring

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

This paper describes the proficient way of choosing the cluster head based on dominating set algorithm in a wireless sensor network (WSN). The algorithm overcomes the energy deterioration problems by this selection process of cluster heads. Clustering algorithms such as LEACH, EEHC and HEED enhance scalability in WSNs. Dominating set algorithm keeps the first node alive longer than the other protocols previously used. As the dominating set of cluster heads are directly connected to each node, the energy of the network is saved by eliminating the intermediate nodes in WSN. Security and trust is pivotal in network messaging. Cluster head is secured with a unique key. The member can only connect with the cluster head if and only if they are secured too. The secured trust model provides security for data transmission in the dominated set network with the group key. The concept can be extended to add a mobile sink for each or for no of clusters to transmit data or messages between cluster heads and to base station. Data security id preferably high and data loss can be prevented. The simulation demonstrates the concept of choosing cluster heads by dominating set algorithm and trust evaluation using DSTE. The research done is rationalized.

Keywords: Wireless Sensor Networks, LEECH, EEHC, HEED, DSTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
390 The Effects on Yield and Yield Components of Different Level Cluster Tip Reduction and Foliar Boric Acid Applications on Alphonse Lavallee Grape Cultivar

Authors: A. Akın, H. Çoban

Abstract:

This study was carried out to determine the effects of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), 1/6 Cluster Tip Reduction (1/6 CTR), 1/9 Cluster Tip Reduction (1/9 CTR), 1/3 CTR + Boric Acid (BA), 1/6 CTR + BA, 1/9 CTR + BA applications on yield and yield components of four years old Alphonse Lavallee grape variety (Vitis vinifera L.) grown on grafted 110 Paulsen rootstock in Konya province in Turkey in the vegetation period in 2015. According to the results, the highest maturity index 21.46 with 1/9 CTR application; the highest grape juice yields 736.67 ml with 1/3 CTR + BA application; the highest L* color value 32.07 with 1/9 CTR application; the highest a* color value 1.74 with 1/9 CTR application; the highest b* color value 3.72 with 1/9 CTR application were obtained. The effects of applications on grape fresh yield, cluster weight and berry weight were not found statistically significant.

Keywords: Alphonse Lavallee grape cultivar, different cluster tip reduction (1/3, 1/6, 1/9), foliar boric acid application, yield, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
389 Assessment of Energy Consumption in Cluster Redevelopment: A Case Study of Bhendi Bazar in Mumbai

Authors: Insiya Kapasi, Roshni Udyavar Yehuda

Abstract:

Cluster Redevelopment is a new concept in the city of Mumbai. Its regulations were laid down by the government in 2009. The concept of cluster redevelopment encompasses a group of buildings defined by a boundary as specified by the municipal authority (in this case, Mumbai), which may be dilapidated or approved for redevelopment. The study analyses the effect of cluster redevelopment in the form of renewal of old group of buildings as compared to refurbishment or restoration - on energy consumption. The methodology includes methods of assessment to determine increase or decrease in energy consumption in cluster redevelopment based on different criteria such as carpet area of the units, building envelope and its architectural elements. Results show that as the area and number of units increase the Energy consumption increases and the EPI (energy performance index) decreases as compared to the base case. The energy consumption per unit area declines by 29% in the proposed cluster redevelopment as compared to the original settlement. It is recommended that although the development is spacious and provides more light and ventilation, aspects such as glass type, traditional architectural features and consumer behavior are critical in the reduction of energy consumption.

Keywords: Cluster redevelopment, energy consumption, energy efficiency, typologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245