Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company

Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour

Abstract:

In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.

Keywords: GeG Company, maintainability, maintenance costs, reliability-center-maintenance.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1474361

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727

References:


[1] A. Azadeha, S. M. Asadzadehd, N. Salehib, M. Firoozic, "Condition-based maintenance effectiveness for series–parallel power generation system—A combined Markovian simulation model", Reliability Engineering & System Safety, 2014, Volume 142, Pages 357–368.
[2] Ben-Daya, M., Duffuaa, S. O., Maintenance and quality: the missing link. Journal of Quality in Maintenance Engineering 1 (1), 1995, 20–26.
[3] Blischke, W. R., Murthy, D. N. P., Reliability: Modelling, Prediction and Optimization. Wiley, New York, 2000.
[4] Blischke, W. R., Murthy, D. N. P., Case Studies in Reliability and Maintenance. John Wiley and Sons Inc., Hoboken, New Jersey. 2003, pp. 351–445.
[5] Raglia, M; Frosolini, M; Zammori, "Overall equipment effectiveness of a manufacturing line (OEEML)", Journal of Manufacturing Technology Management Vol.20 No.1, 2009, pp.29-8.
[6] Da Silva Manuel Inacio, C; Manuel Pereira Cabrita, C; de Oliveira Matias Joao Carlos. P, "reliability maintenance: a case study concerning maintenance service costs"., Journal of Quality in Maintenance Engineering Vol.14 No.4,2008, pp.343-355.
[7] Eliashberg, J., Singpurwalla, N. D., Wilson, S. P., Calculating the reserve for a time and usage indexed warranty. Management Science 43 (7), 1997, 966–975.
[8] Gia-Shie Liu, Three m-failure group maintenance models for M/M/N unreliable queuing service systems, Computers & Industrial Engineering., Volume 62, Issue 4, 2012, Pages 1011–1024.
[9] Giorgio Baronea, Dan M. Frangopolb, Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost., Structural Safety, Volume 48, May 2014, Pages 40–50, 2014.
[10] Inman, R. R., Empirical evaluation of exponential and independence assumptions in queuing models of manufacturing systems. Production and Operations Management 8 (4), 409–432, 1999.
[11] Ireson, W. G., Coombs, C. F., Moss, R. Y., Handbook of Reliability Engineering and Management. McGraw-Hill, New York, 1996.
[12] Karin S. de Smidt-Destombesa, Matthieu C. van der Heijdenb, Aart van Hartenb., On the availability of a k-out-of-N system given limited spares and repair capacity under a condition based maintenance strategy., Reliability Engineering & System Safety., Volume 83, Issue 3, Pages 287–300, 2004.
[13] Katila, P, "TPM principles in the flexible manufacturing systems", Journal of Technical Report, 2000.
[14] K. Das, A comparative study of exponential distribution vs Weibull distribution in machine reliability analysis in a CMS design. Computers & Industrial Engineering 54, 12–33, 2008.
[15] Koren, Y., Hu, S. J., Weber, T., Impact of manufacturing system configuration on performance. Annals of the CIRP 47, 369–372, 1998.
[16] Liberopoulos, G., Tsarouhas, P., Reliability analysis of an automated pizza processing line. Journal of Food Engineering 69 (1), 79–96, 2005.
[17] Montgomery, D.C., Introduction to Statistical Control. John Wiley and Sons Inc., New York, NY. pp. 69–85, 1985.
[18] Morse, P. M, " Queues, inventories and maintenance: the analysis of operational systems with variable demand and supply", John Wiley, 1958.
[19] Nachiappan R. M; Anantharaman N., "Evaluation of overall line effectiveness (OLE) in a continuous product line manufacturing system", Journal of Manufacturing Technology Management Vol. 17 No. 7, pp. 987-1008, 2005.
[20] Panagiotis H. Tsarouhas, Ioannis S. Arvanitoyannis, Zafiris D. Ampatzis., A case study of investigating reliability and maintainability in a Greek juice bottling medium size enterprise (MSE). Journal of Food Engineering 95, 479–488, 2009.
[21] Seifoddini, S., Djassemi, M., The effect of reliability consideration on the application of quality index. Computers and Industrial Engineering 40 (1–2), 65–77, 2001.
[22] Tsarouhas, P., Varzakas, T., Arvanitoyannis, I., Reliability and maintainability analysis of strudel production line with experimental data; a case study. Journal of Food Engineering 91, 250–259, 2009a.
[23] Tsarouhas, P., Arvanitoyannis, I., Varzakas, T., Reliability and maintainability analysis of cheese (feta) production line in a Greek medium-size company: a case study. Journal of Food Engineering 94, 233–240, 2009b.
[24] Usher, J. M., Roy, U., Parsaei, H. R., Integrated Product and Process Development. Wiley, Hoboken, NJ, 1998.
[25] Wang, Y., Jia, Y., Yu, J., Yi, S., Failure probabilistic model of CNC lathes. Reliability Engineering and System Safety 65 (1), 307–314, 1999.