Search results for: Passive Solar Building Design
5337 Research on the Strategy of Whole-Life-Cycle Campus Design from the Perspective of Sustainable Concept: A Case Study on Hangzhou Senior High School in Zhejiang
Authors: Fan Yang
Abstract:
With the development of social economy and the popularization of quality education, the Chinese government invests more and more funding in education. Campus constructions are experiencing a great development phase. Under the trend of sustainable development, modern green campus design needs to meet new requirements of contemporary, informational and diversified education means and adapt to future education development. Educators, designers and other participants of campus design are facing new challenges. By studying and analyzing the universal unsatisfied current situations and sustainable development requirements of Chinese campuses, this paper summarizes the strategies and intentions of the whole-life-cycle campus design. In addition, a Chinese high school in Zhejiang province is added to illustrate the design cycle in an actual case. It is aimed to make all participants of campus design, especially the designers, to realize the importance of whole-life-cycle campus design and cooperate better. Sustainable campus design is expected to come true in deed instead of becoming a slogan in this way.
Keywords: Campus design, green school, sustainable development, whole-life-cycle design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9535336 A Novel Algorithm for Parsing IFC Models
Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai
Abstract:
Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27045335 Abstraction Hierarchies for Engineering Design
Authors: Esra E. Aleisa, Li Lin
Abstract:
Complex engineering design problems consist of numerous factors of varying criticalities. Considering fundamental features of design and inferior details alike will result in an extensive waste of time and effort. Design parameters should be introduced gradually as appropriate based on their significance relevant to the problem context. This motivates the representation of design parameters at multiple levels of an abstraction hierarchy. However, developing abstraction hierarchies is an area that is not well understood. Our research proposes a novel hierarchical abstraction methodology to plan effective engineering designs and processes. It provides a theoretically sound foundation to represent, abstract and stratify engineering design parameters and tasks according to causality and criticality. The methodology creates abstraction hierarchies in a recursive and bottom-up approach that guarantees no backtracking across any of the abstraction levels. The methodology consists of three main phases, representation, abstraction, and layering to multiple hierarchical levels. The effectiveness of the developed methodology is demonstrated by a design problem.Keywords: Hierarchies, Abstraction, Loop-free, Engineering Design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15145334 Development of Cellulose Panels with Porous Structure for Sustainable Building Insulation
Authors: P. Garbagnoli, M. Musitelli, B. Del Curto, MP. Pedeferri
Abstract:
The study and development of an innovative material for building insulation is really important for a sustainable society in order to improve comfort and reducing energy consumption. The aim of this work is the development of insulating panels for sustainable buildings based on an innovative material made by cardboard and Phase Change Materials (PCMs). The research has consisted in laboratory tests whose purpose has been the obtaining of the required properties for insulation panels: lightweight, porous structures and mechanical resistance. PCMs have been used for many years in the building industry as smart insulation technology because of their properties of storage and release high quantity of latent heat at useful specific temperatures [1]- [2]. The integration of PCMs into cellulose matrix during the waste paper recycling process has been developed in order to obtain a composite material. Experiments on the productive process for the realization of insulating panels were done in order to make the new material suitable for building application. The addition of rising agents demonstrated the possibility to obtain a lighter structure with better insulation properties. Several tests were conducted to verify the new panel properties. The results obtained have shown the possibility to realize an innovative and sustainable material suitable to replace insulating panels currently used.Keywords: Sustainability, recycling, waste cardboard, PCM, cladding system, insulating materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22935333 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand
Authors: Warangkana Juangjandee
Abstract:
The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.
Keywords: Relative humidity, renovation, temperature, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8625332 Optical and Structural Properties of a ZnS Buffer Layer Fabricated with Deposition Temperature of RF Magnetron Sputtering System
Authors: Won Song, Bo-Ra Koo, Seok Eui Choi, Yong-Taeg Oh, Dong-Chan Shin
Abstract:
Optical properties of sputter-deposited ZnS thin films were investigated as potential replacements for CBD(chemical bath deposition) CdS buffer layers in the application of CIGS solar cells. ZnS thin films were fabricated on glass substrates at RT, 150oC, 200oC, and 250oC with 50 sccm Ar gas using an RF magnetron sputtering system. The crystal structure of the thin film is found to be zinc blende (cubic) structure. Lattice parameter of ZnS is slightly larger than CdS on the plane and thus better matched with that of CIGS. Within a 400-800 nm wavelength region, the average transmittance was larger than 75%. When the deposition temperature of the thin film was increased, the blue shift phenomenon was enhanced. Band gap energy of the ZnS thin film tended to increase as the deposition temperature increased. ZnS thin film is a promising material system for the CIGS buffer layer, in terms of ease of processing, low cost, environmental friendliness, higher transparency, and electrical propertiesKeywords: ZnS thin film, Buffer layer, CIGS, Solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23985331 Initial Experiences of the First Version of Slovene Sustainable Building Indicators That Are Based on Level(s)
Authors: Sabina Jordan, Miha Tomšič, Friderik Knez, Marjana Šijanec Zavrl
Abstract:
To determine the possibilities for the implementation of sustainable building indicators in Slovenia, testing of the first version of the indicators, developed in the CARE4CLIMATE project and based on the EU Level(s) framework, was carried out in 2022. Invited and interested stakeholders of the construction process were provided with video content and instructions on the Slovenian e-platform of sustainable building indicators. In addition, workshops and lectures with individual subjects were also performed. The final phase of the training and testing procedure included a questionnaire, which was used to obtain information about the participants' opinions regarding the indicators. The analysis of the results of the testing, which was focused on level 2, confirmed the key preliminary finding of the development group, namely that currently, due to the lack of certain knowledge, data, and tools, all indicators for this level are not yet feasible in practice. The research also highlighted the greater need for training and specialization of experts in this field. At the same time, it showed that the testing of the first version itself was a big challenge: only 30 experts fully participated and filled out the online questionnaire. This number seems alarmingly low at first glance, but compared to level(s) testing in the EU member states, it is much more than 50 times higher. However, for the further execution of the indicators in Slovenia, it will therefore be necessary to invest a lot of effort and engagement. It is likely that state support will also be needed, for example, in the form of financial mechanisms or incentives and/or legislative background.
Keywords: Sustainability, building indicator, project CARE4CLIMATE, alpha version SLO kTG, Level(s), sustainable construction stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005330 Adoption of Appropriate and Cost Effective Technologies in Housing: Indian Experience
Authors: A. K. Jain, M. C. Paliwal
Abstract:
Construction cost in India is increasing at around 50 per cent over the average inflation levels. It have registered increase of up to 15 per cent every year, primarily due to cost of basic building materials such as steel, cement, bricks, timber and other inputs as well as cost of labour. As a result, the cost of construction using conventional building materials and construction is becoming beyond the affordable limits particularly for low-income groups of population as well as a large cross section of the middle - income groups. Therefore, there is a need to adopt cost-effective construction methods either by up-gradation of traditional technologies using local resources or applying modern construction materials and techniques with efficient inputs leading to economic solutions. This has become the most relevant aspect in the context of the large volume of housing to be constructed in both rural and urban areas and the consideration of limitations in the availability of resources such as building materials and finance. This paper makes an overview of the housing status in India and adoption of appropriate and cost effective technologies in the country.Keywords: Appropriate, Cost Effective, Ekra, Five year plan, Poverty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49745329 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning
Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.
Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11305328 Sensitivity and Reliability Analysis of Masonry Infilled Frames
Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar
Abstract:
The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.Keywords: Fragility curve, sensitivity analysis, reliability index, RC frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12055327 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis
Authors: Boo-Sung Koh, Seung-Eock Kim
Abstract:
In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.
Keywords: Direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14545326 Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector
Authors: Salma Parvin, M. A. Alim
Abstract:
The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al2O3-waternanofluid, TiO2-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin’s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of m up to a certain range.Keywords: DASC, forced convection, mass flow rate, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8575325 A Servo Control System Using the Loop Shaping Design Procedure
Authors: Naohiro Ban, Hiromitsu Ogawa, Manato Ono, Yoshihisa Ishida
Abstract:
This paper describes an expanded system for a servo system design by using the Loop Shaping Design Procedure (LSDP). LSDP is one of the H∞ design procedure. By conducting Loop Shaping with a compensator and robust stabilization to satisfy the index function, we get the feedback controller that makes the control system stable. In this paper, we propose an expanded system for a servo system design and apply to the DC motor. The proposed method performs well in the DC motor positioning control. It has no steady-state error in the disturbance response and it has robust stability.Keywords: Loop Shaping Design Procedure (LSDP), servosystem, DC motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24105324 Design for Reliability and Manufacturing Yield (Study and Modeling of Defects in Integrated Circuits for their Reliability Analysis)
Authors: G. Ait Abdelmalek, R. Ziani
Abstract:
In this document, we have proposed a robust conceptual strategy, in order to improve the robustness against the manufacturing defects and thus the reliability of logic CMOS circuits. However, in order to enable the use of future CMOS technology nodes this strategy combines various types of design: DFR (Design for Reliability), techniques of tolerance: hardware redundancy TMR (Triple Modular Redundancy) for hard error tolerance, the DFT (Design for Testability. The Results on largest ISCAS and ITC benchmark circuits show that our approach improves considerably the reliability, by reducing the key factors, the area costs and fault tolerance probability.Keywords: Design for reliability, design for testability, fault tolerance, manufacturing yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20635323 Reinforced Concrete Slab under Static and Dynamic Loadings
Authors: Aaron Aboshio, Jianqioa Ye
Abstract:
In this study, static and dynamic responses of a typical reinforced concrete solid slab, designed to British Standard (BS 8110: 1997) and under self and live loadings for dance halls are reported. Linear perturbation analysis using finite element method was employed for modal, impulse loading and frequency response analyses of the slab under the aforementioned loading condition. Results from the static and dynamic analyses, comprising of the slab fundamental frequencies and mode shapes, dynamic amplification factor, maximum deflection, stress distributions among other valuable outcomes are presented and discussed. These were gauged with the limiting provisions in the design code with a view of justifying valid optimization objective function for the structure that can ensure both adequate strength and economical section for large clear span slabs. This is necessary owing to the continued increase in cost of erecting building structures and the squeeze on public finance globally.Keywords: Economical design, Finite element method, Modal dynamics, Reinforced concrete, Slab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46175322 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process
Authors: Hen Friman
Abstract:
Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.
Keywords: Renewable energy, solar energy, decentralized facilities, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345321 A Computer Aided Model for Supporting Design Education
Authors: Leyla Y. Tokman, Rusen Yamaçlı
Abstract:
Educating effective architect designers is an important goal of architectural education. But what contributes to students- performance, and to critical and creative thinking in architectural design education? Besides teaching architecture students how to understand logical arguments, eliminate the inadequate solutions and focus on the correct ones, it is also crucial to teach students how to focus on exploring ideas and the alternative solutions and seeking for other right answers rather than one. This paper focuses on the enhancing architectural design education and may provide implications for enhancing teaching design.Keywords: Architectural education, design studio, teaching method, GUI-Graphical User Interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18405320 Sustainable Traditional Architecture and Urban Planning in Hot-Arid Climate of Iran
Authors: Farnaz Nazem
Abstract:
The aim of sustainable architecture is to design buildings with the least adverse effects on the environment and provide better conditions for people. What building forms make the best use of land? This question was addressed in the late 1960s at the center of Land Use and Built Form Studies in Cambridge. This led to a number of influential papers which had a great influence on the practice of urban design. This paper concentrates on the results of sustainability caused by climatic conditions in Iranian traditional architecture in hot-arid regions. As people spent a significant amount of their time in houses, it was very important to have such houses to fulfill their needs physically and spiritually as well as satisfying their cultural and religious aspects of their lifestyles. In a vast country such as Iran with different climatic zones, traditional builders have presented series of logical solutions for human comfort. These solutions have been able to response to the environmental problems for a long period of time. As a result, by considering the experience in traditional architecture of hot–arid climate in Iran, it is possible to attain sustainable architecture.
Keywords: Hot-arid climate, Iran, sustainable traditional architecture, urban planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34075319 Crude Distillation Process Simulation Using Unisim Design Simulator
Authors: C. Patrascioiu, M. Jamali
Abstract:
The paper deals with the simulation of the crude distillation process using the Unisim Design simulator. The necessity of simulating this process is argued both by considerations related to the design of the crude distillation column, but also by considerations related to the design of advanced control systems. In order to use the Unisim Design simulator to simulate the crude distillation process, the identification of the simulators used in Romania and an analysis of the PRO/II, HYSYS, and Aspen HYSYS simulators were carried out. Analysis of the simulators for the crude distillation process has allowed the authors to elaborate the conclusions of the success of the crude modelling. A first aspect developed by the authors is the implementation of specific problems of petroleum liquid-vapors equilibrium using Unisim Design simulator. The second major element of the article is the development of the methodology and the elaboration of the simulation program for the crude distillation process, using Unisim Design resources. The obtained results validate the proposed methodology and will allow dynamic simulation of the process.
Keywords: Crude oil, distillation, simulation, Unisim Design, simulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27025318 Research on Maintenance Design Method based Virtual Maintenance
Authors: Yunbin Yang, Liangli He, Fengjun Wang
Abstract:
The essentiality of maintenance assessment and maintenance optimization in design stage is analyzed, and the existent problems of conventional maintenance design method are illuminated. MDMVM (Maintenance Design Method based Virtual Maintenance) is illuminated, and the process of MDMVM established, and the MDMVM architecture is given out. The key techniques of MDMVM are analyzed, and include maintenance design based KBE (Knowledge Based Engineering) and virtual maintenance based physically attribute. According to physical property, physically based modeling, visual object movement control, the simulation of operation force and maintenance sequence planning method are emphatically illuminated. Maintenance design system based virtual maintenance is established in foundation of maintenance design method.Keywords: Digital mock-up, virtual maintenance, knowledge engineering, maintenance sequence planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13655317 Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization
Authors: R. Ramaprabha
Abstract:
This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.
Keywords: Global peak, Mobile PV arrays, Partial shading, optimization, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42355316 Effect of Infill Walls on Response of Multi Storey Reinforced Concrete Structure
Authors: Ayman Abd-Elhamed, Sayed Mahmoud
Abstract:
The present research work investigates the seismic response of reinforced concrete (RC) frame building considering the effect of modeling masonry infill (MI) walls. The seismic behavior of a residential 6-storey RC frame building, considering and ignoring the effect of masonry, is numerically investigated using response spectrum (RS) analysis. The considered herein building is designed as a moment resisting frame (MRF) system following the Egyptian code (EC) requirements. Two developed models in terms of bare frame and infill walls frame are used in the study. Equivalent diagonal strut methodology is used to represent the behavior of infill walls, whilst the well-known software package ETABS is used for implementing all frame models and performing the analysis. The results of the numerical simulations such as base shear, displacements, and internal forces for the bare frame as well as the infill wall frame are presented in a comparative way. The results of the study indicate that the interaction between infill walls and frames significantly change the responses of buildings during earthquakes compared to the results of bare frame building model. Specifically, the seismic analysis of RC bare frame structure leads to underestimation of base shear and consequently damage or even collapse of buildings may occur under strong shakings. On the other hand, considering infill walls significantly decrease the peak floor displacements and drifts in both X and Y-directions.Keywords: Masonry infill, bare frame, response spectrum, seismic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35105315 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes
Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi
Abstract:
Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.Keywords: Nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22485314 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong
Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu
Abstract:
This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%.
Keywords: —Sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18255313 Sustainable and Ecological Designs of the Built Environment
Authors: Charles Mbohwa, Alexander Mudiwakure
Abstract:
This paper reviews designs of the built environment from a sustainability perspective, emphasizing their importance in achieving ecological and sustainable economic objectives. The built environment has traditionally resulted in loss of biodiversity, extinction of some species, climate change, excessive water use, land degradation, space depletion, waste accumulation, energy consumption and environmental pollution. Materials used like plastics, metals, bricks, concrete, cement, natural aggregates, glass and plaster have wreaked havoc on the earth´s resources, since they have high levels of embodied energy hence not sustainable. Additional resources are consumed during use and disposal phases. Proposed designs for sustainability solutions include: ecological sanitation and eco-efficiency systems that ensure social, economic, environmental and technical sustainability. Renewable materials and energy systems, passive cooling and heating systems and material and energy reduction, reuse and recycling can improve the sector. These ideas are intended to inform the field of ecological design of the built environment.Keywords: Ecological and sustainability designs, environmental degradation, ecological sanitation, energy use efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24015312 Parametric Cost Estimating Relationships for Design Effort Estimation
Authors: Adil Salam, Nadia Bhuiyan, Gerard J. Gouw
Abstract:
The Canadian aerospace industry faces many challenges. One of them is the difficulty in estimating costs. In particular, the design effort required in a project impacts resource requirements and lead-time, and consequently the final cost. This paper presents the findings of a case study conducted for recognized global leader in the design and manufacturing of aircraft engines. The study models parametric cost estimation relationships to estimate the design effort of integrated blade-rotor low-pressure compressor fans. Several effort drivers are selected to model the relationship. Comparative analyses of three types of models are conducted. The model with the best accuracy and significance in design estimation is retained.
Keywords: Effort estimation, design, aerospace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25785311 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.
Keywords: Masonry infill, framed structures, RC buildings, non-structural elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32885310 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector
Authors: Victor Birikorang Danquah
Abstract:
Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to the unreliable weather patterns, Ghana increased its reliance on thermal power. Thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically 'vertically integrated', with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is the need for increasing renewable energy such as wind and solar in the electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allow any financial gains to be shared among the community members.
Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8575309 Empirical Exploration of Correlations between Software Design Measures: A Replication Study
Authors: Jehad Al Dallal
Abstract:
Software engineers apply different measures to quantify the quality of software design. These measures consider artifacts developed at low or high level software design phases. The results are used to point to design weaknesses and to indicate design points that have to be restructured. Understanding the relationship among the quality measures and among the design quality aspects considered by these measures is important to interpreting the impact of a measure for a quality aspect on other potentially related aspects. In addition, exploring the relationship between quality measures helps to explain the impact of different quality measures on external quality aspects, such as reliability and maintainability. In this paper, we report a replication study that empirically explores the correlation between six well known and commonly applied design quality measures. These measures consider several quality aspects, including complexity, cohesion, coupling, and inheritance. The results indicate that inheritance measures are weakly correlated to other measures, whereas complexity, coupling, and cohesion measures are mostly strongly correlated.
Keywords: Quality attribute, quality measure, software design quality, spearman correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8105308 Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper
Authors: H. Juma, F. Al-hujaili, R. Kashani
Abstract:
Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.
Keywords: Tuned mass damper, air spring, semi-active, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656