Search results for: Learning supportive assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3327

Search results for: Learning supportive assessment

2547 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: S. Areerachakul, N. Ployong, S. Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: Artificial neural network, classification, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
2546 Information Security in E-Learning through Identification of Humans

Authors: Hassan Haleh, Zohreh Nasiri, Parisa Farahpour

Abstract:

During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.

Keywords: Fingerprint, minutiae, extraction of properties, multilayer neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
2545 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System

Authors: A. Mohamed Mydeen, Pallapa Venkataram

Abstract:

The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.

Keywords: Generic knowledge representation, toolkit, toolroom, pervasive computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
2544 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through (semi)-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: Detection Rate, False Positives, Perceptron, One Side Class, Ensembles, Decision Tree, Hybrid methods, Feature Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
2543 Teaching College Classes with Virtual Reality

Authors: Penn P. Wu

Abstract:

Recent advances in virtual reality (VR) technologies have made it possible for students to experience a virtual on-the-scene or virtual in-person observation of an educational event. In an experimental class, the author uses VR, particularly 360° videos, to virtually engage students in an event, through a wide spectrum of educational resources, such s a virtual “bystander.” Students were able to observe the event as if they were physically on site, although they could not intervene with the scene. The author will describe the adopted equipment, specification, and cost of building them as well as the quality of VR. The author will discuss (a) feasibility, effectiveness, and efficiency of using VR as a supplemental technology to teach college students and criteria and methodologies used by the authors to evaluate them; (b) barriers and issues of technological implementation; and (c) pedagogical practices learned through this experiment. The author also attempts to explore (a) how VR could provide an interactive virtual in-person learning experience; (b) how VR can possibly change traditional college education and online education; (c) how educators and balance six critical factors: cost, time, technology, quality, result, and content.

Keywords: Learning with VR, virtual experience of learning, virtual in-person learning, virtual reality for education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
2542 The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students

Authors: Sobhy Fathy A. Hashesh

Abstract:

The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Keywords: AFC, Lego Education, mechatronics, STEAM, Al-Andalus Fused Curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
2541 Online Teaching and Learning Processes: Declarative and Procedural Knowledge

Authors: Eulalia Torras, Andreu Bellot

Abstract:

To know whether students’ achievements are the result of online interaction and not just a consequence of individual differences themselves, it seems essential to link the teaching presence and social presence to the types of knowledge built. The research aim is to analyze the social presence in relation to two types of knowledge, declarative and procedural. Qualitative methodology has been used. The analysis of the contents was based on an observation protocol that included community of enquiry indicators and procedural and declarative knowledge indicators. The research has been conducted in three phases that focused on an observational protocol and indicators, results and conclusions. Results show that the teaching-learning processes have been characterized by the patterns of presence and types of knowledge. Results also show the importance of social presence support provided by the teacher and the students, not only in regard to the nature of the instructional support but also concerning how it is presented to the student and the importance that is attributed to it in the teaching-learning process, that is, what it is that assistance is offered on. In this study, we find that the presence based on procedural guidelines and declarative reflection, the management of shared meaning on the basis of the skills and the evidence of these skills entail patterns of learning. Nevertheless, the importance that the teacher attributes to each support aspect has a bearing on the extent to which the students reflect more on the given task.

Keywords: Education, online, teaching and learning processes, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
2540 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27
2539 Search Engine Module in Voice Recognition Browser to Facilitate the Visually Impaired in Virtual Learning (MGSYS VISI-VL)

Authors: Nurulisma Ismail, Halimah Badioze Zaman

Abstract:

Nowadays, web-based technologies influence in people-s daily life such as in education, business and others. Therefore, many web developers are too eager to develop their web applications with fully animation graphics and forgetting its accessibility to its users. Their purpose is to make their web applications look impressive. Thus, this paper would highlight on the usability and accessibility of a voice recognition browser as a tool to facilitate the visually impaired and blind learners in accessing virtual learning environment. More specifically, the objectives of the study are (i) to explore the challenges faced by the visually impaired learners in accessing virtual learning environment (ii) to determine the suitable guidelines for developing a voice recognition browser that is accessible to the visually impaired. Furthermore, this study was prepared based on an observation conducted with the Malaysian visually impaired learners. Finally, the result of this study would underline on the development of an accessible voice recognition browser for the visually impaired.

Keywords: Accessibility, Usability, Virtual Learning, Visually Impaired, Voice Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
2538 Subjective Versus Objective Assessment for Magnetic Resonance Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: Medical Resonance (MR) images, Difference Mean Opinion Score (DMOS), Full Reference Image Quality Assessment (FR-IQA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2537 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: Change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
2536 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences

Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam

Abstract:

The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.

Keywords: Learning experiences, innovation, traditional games, trainee teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
2535 State-Of-The Art Practices in Bridge Inspection

Authors: Salam R. Yaghi, Saleh Abu Dabous

Abstract:

Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general.

Keywords: Bridge Inspection, Condition Assessment, questionnaire, Non-Destructive Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
2534 Predictive Analytics of Student Performance Determinants in Education

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
2533 Open Educational Resource in Online Mathematics Learning

Authors: Haohao Wang

Abstract:

Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.

Keywords: Online learning, Open Educational Resources, Multimedia, Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
2532 Endogenous Fantasy – Based Serious Games: Intrinsic Motivation and Learning

Authors: Robert F. Kenny, Glenda A. Gunter

Abstract:

Current technological advances pale in comparison to the changes in social behaviors and 'sense of place' that is being empowered since the Internet made it on the scene. Today-s students view the Internet as both a source of entertainment and an educational tool. The development of virtual environments is a conceptual framework that needs to be addressed by educators and it is important that they become familiar with who these virtual learners are and how they are motivated to learn. Massively multiplayer online role playing games (MMORPGs), if well designed, could become the vehicle of choice to deliver learning content. We suggest that these games, in order to accomplish these goals, must begin with well-established instructional design principles that are co-aligned with established principles of video game design. And have the opportunity to provide an instructional model of significant prescriptive power. The authors believe that game designers need to take advantage of the natural motivation player-learners have for playing games by developing them in such a way so as to promote, intrinsic motivation, content learning, transfer of knowledge, and naturalization.

Keywords: serious games, endogenous fantasy, intrinsic motivation, online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
2531 Learning Human-Like Color Categorization through Interaction

Authors: Rinaldo Christian Tanumara, Ming Xie, Chi Kit Au

Abstract:

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Keywords: Color categorization, color learning, machinelearning, color naming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
2530 Risk Assessment of Particulate Matter (PM10) in Makkah, Saudi Arabia

Authors: Turki M. Habeebullah, Atef M. F. Mohammed, Essam A. Morsy

Abstract:

In recent decades, particulate matter (PM10) have received much attention due to its potential adverse health impact and the subsequent need to better control or regulate these pollutants. The aim of this paper is focused on study risk assessment of PM10 in four different districts (Shebikah, Masfalah, Aziziyah, Awali) in Makkah, Saudi Arabia during the period from 1 Ramadan 1434 AH - 27 Safar 1435 AH. Samples were collected by using Low Volume Sampler (LVS Low Volume Sampler) device and filtration method for estimating the total concentration of PM10. The study indicated that the mean PM10 concentrations were 254.6 (186.1 - 343.2) μg/m3 in Shebikah, 184.9 (145.6 - 271.4) μg/m3 in Masfalah, 162.4 (92.4-253.8) μg/m3 in Aziziyah, and 56.0 (44.5 - 119.8) μg/m3 in Awali. These values did not exceed the permissible limits in PME (340 μg/m3 as daily average). Furthermore, health assessment is carried out using AirQ2.2.3 model to estimate the number of hospital admissions due to respiratory diseases. The cumulative number of cases per 100,000 were 1534 (18-3050 case), which lower than that recorded in the United States, Malaysia. The concentration response coefficient was 0.49 (95% CI 0.05 - 0.70) per 10 μg/m3 increase of PM10.

Keywords: Air pollution, Respiratory diseases, AirQ2.2.3, Makkah.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
2529 On Developing a Core Guideline for English Language Training Programs in Business Settings

Authors: T. Ito, K. Kawaguchi, R. Ohta

Abstract:

The purpose of this study is to provide a guideline to assist globally-minded companies in developing task-based English- language programs for their employees. After conducting an online self-assessment questionnaire comprised of 45 job-related tasks, we analyzed responses received from 3,000 Japanese company employees and developed a checklist that considered three areas; i) the percentage of those who need to accomplish English-language tasks in their workplace (need for English), ii) a five-point self-assessment score (task performance level), and iii) the impact of previous task experience on perceived performance (experience factor). The 45 tasks were graded according to five proficiency levels. Our results helped us to create a core guideline that may assist companies in two ways: first, in helping determine which tasks employees with a certain English proficiency should be able to satisfactorily carry out, and secondly, to quickly prioritize which business-related English skills they would need in future English language programs.

Keywords: Business settings, Can-do statements, English language training programs, Self-assessment, Task experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
2528 Closing the Achievement Gap Within Reading and Mathematics Classrooms by Fostering Hispanic Students- Educational Resilience

Authors: Hersh C. Waxman, Yolanda N. Padrón, Jee-Young Shin, Héctor H. Rivera

Abstract:

While many studies have conducted the achievement gap between groups of students in school districts, few studies have utilized resilience research to investigate achievement gaps within classrooms. This paper aims to summarize and discuss some recent studies Waxman, Padr├│n, and their colleagues conducted, in which they examined learning environment differences between resilient and nonresilient students in reading and mathematics classrooms. The classes consist of predominantly Hispanic elementary school students from low-income families. These studies all incorporated learning environment questionnaires and systematic observation methods. Significant differences were found between resilient and nonresilient students on their classroom learning environments and classroom behaviors. The observation results indicate that the amount and quality of teacher and student academic interaction are two of the most influential variables that promote student outcomes. This paper concludes by suggesting the following teacher practices to promote resiliency in schools: (a) using feedback from classroom observation and learning environment measures, (b) employing explicit teaching practices; and (c) understanding students on a social and personal level.

Keywords: achievement gap, classroom learning environments, educational resilience, systematic classroom observation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
2527 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises

Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska

Abstract:

Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.

Keywords: Civil engineering, occupational health, productivity, safety climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
2526 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
2525 A Metametadata Architecture forPedagogic Data Description

Authors: A. Ismail, M. S. Joy, J. E. Sinclair, M. I. Hamzah

Abstract:

This paper focuses on a novel method for semantic searching and retrieval of information about learning materials. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. A novel metametadata taxonomy has been developed which provides the basis for a semantic search engine to extract, match and map queries to retrieve relevant results. The use of ontological views is a foundation for viewing the pedagogical content of metadata extracted from learning objects by using the pedagogical attributes from the metametadata taxonomy. Using the ontological approach and metametadata (based on the metametadata taxonomy) we present a novel semantic searching mechanism.These three strands – the taxonomy, the ontological views, and the search algorithm – are incorporated into a novel architecture (OMESCOD) which has been implemented.

Keywords: Metadata, metametadata, semantic, ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
2524 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this research, intended for concrete products for the construction materials, by using the LCA method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low carbon technologies of the future.

Keywords: CO2 Emissions, CO2 Reduction, Ready-mixed Concrete, Environmental Impact Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
2523 Multi-Context Recurrent Neural Network for Time Series Applications

Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi

Abstract:

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
2522 Environmental Impact Assessment of Gotv and Hydro-Electric Dam on the Karoon River Using ICOLD Technique

Authors: A. Sayadi, A. Khodadadi D., S. Partani

Abstract:

Today Environmental Impact Assessment (EIA) is known as one of the most important tools for decision makers in the construction of civil and industrial projects towards sustainable development. In the past, projects were evaluated based on cost and benefit analysis regardless of the physical and biological environmental effects and its socio-economical impacts. According to the Department of Environment (DOE) of Iran's regulations, the construction of hydroelectric dams is an activity that requires an EIA report. In this paper the environmental impact assessment of the Gotvand hydro-electrical dam has been evaluated in the three environment elements, biological, Physical-chemical and cultural units. This dam is one of the largest dams in Iran with a volume of 4500 MCM and is going to be the last dam on the Karoon River in the south of Iran. In this paper the ICOLD (International Commission on Large Dams) technique was employed for the environmental impact assessment of the dam. The research includes all socio economical and environmental effects of the dam during the construction and operation of the hydro electric dam and Environmental management, monitoring and mitigation of negative impacts were analyzed. In this project the results led to using some techniques to protect the destructive impacts on biological aspects beside the effective long time period impacts on the biological aspects. The impacts on physical aspects are temporary and negative commonly that could be restored and rehabilitated in natural process in the long time in operation period.

Keywords: "Gotvand Hydro Electric Dam", "EIA", "ICOLD and Leopold matrices"

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387
2521 Quality of Concrete of Recent Development Projects in Libya

Authors: Mohamed .S .Alazhari, Milad. M. Al Shebani

Abstract:

Numerous concrete structures projects are currently running in Libya as part of a US$50 billion government funding. The quality of concrete used in 20 different construction projects were assessed based mainly on the concrete compressive strength achieved. The projects are scattered all over the country and are at various levels of completeness. For most of these projects, the concrete compressive strength was obtained from test results of a 150mm standard cube mold. Statistical analysis of collected concrete compressive strengths reveals that the data in general followed a normal distribution pattern. The study covers comparison and assessment of concrete quality aspects such as: quality control, strength range, data standard deviation, data scatter, and ratio of minimum strength to design strength. Site quality control for these projects ranged from very good to poor according to ACI214 criteria [1]. The ranges (Rg) of the strength (max. strength – min. strength) divided by average strength are from (34% to 160%). Data scatter is measured as the range (Rg) divided by standard deviation () and is found to be (1.82 to 11.04), indicating that the range is ±3σ. International construction companies working in Libya follow different assessment criteria for concrete compressive strength in lieu of national unified procedure. The study reveals that assessments of concrete quality conducted by these construction companies usually meet their adopted (internal) standards, but sometimes fail to meet internationally known standard requirements. The assessment of concrete presented in this paper is based on ACI, British standards and proposed Libyan concrete strength assessment criteria.

Keywords: Acceptance criteria, Concrete, Compressive strength, quality control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
2520 A Learner-Centred or Artefact-Centred Classroom? Impact of Technology, Artefacts, and Environment on Task Processes in an English as a Foreign Language Classroom

Authors: Nobue T. Ellis

Abstract:

This preliminary study attempts to see if a learning environment influences instructor’s teaching strategies and learners’ in-class activities in a foreign language class at a university in Japan. The class under study was conducted in a computer room, while the majority of classes of the same course were offered in traditional classrooms without computers. The study also sees if the unplanned blended learning environment, enhanced, or worked against, in achieving course goals, by paying close attention to in-class artefacts, such as computers. In the macro-level analysis, the course syllabus and weekly itinerary of the course were looked at; and in the microlevel analysis, nonhuman actors in their environments were named and analyzed to see how they influenced the learners’ task processes. The result indicated that students were heavily influenced by the presence of computers, which lead them to disregard some aspects of intended learning objectives.

Keywords: Computer-assisted language learning, actor-network theory, English as a foreign language, task-based teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
2519 A Similarity Function for Global Quality Assessment of Retinal Vessel Segmentations

Authors: Arturo Aquino, Manuel Emilio Gegundez, Jose Manuel Bravo, Diego Marin

Abstract:

Retinal vascularity assessment plays an important role in diagnosis of ophthalmic pathologies. The employment of digital images for this purpose makes possible a computerized approach and has motivated development of many methods for automated vascular tree segmentation. Metrics based on contingency tables for binary classification have been widely used for evaluating performance of these algorithms and, concretely, the accuracy has been mostly used as measure of global performance in this topic. However, this metric shows very poor matching with human perception as well as other notable deficiencies. Here, a new similarity function for measuring quality of retinal vessel segmentations is proposed. This similarity function is based on characterizing the vascular tree as a connected structure with a measurable area and length. Tests made indicate that this new approach shows better behaviour than the current one does. Generalizing, this concept of measuring descriptive properties may be used for designing functions for measuring more successfully segmentation quality of other complex structures.

Keywords: Retinal vessel segmentation, quality assessment, performanceevaluation, similarity function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2518 Promoting Complex Systems Learning through the use of Computer Modeling

Authors: Kamel Hashem, David Mioduser

Abstract:

This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.

Keywords: Complexity, Educational technology, Learning by modeling, Mental models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572