Environmental Impact Assessment of *Gotvand* Hydro-Electric Dam on the *Karoon* River Using ICOLD Technique

A. Sayadi, A. Khodadadi D., and S. Partani

Abstract-Today Environmental Impact Assessment (EIA) is known as one of the most important tools for decision makers in the construction of civil and industrial projects towards sustainable development. In the past, projects were evaluated based on cost and benefit analysis regardless of the physical and biological environmental effects and its socio-economical impacts. According to the Department of Environment (DOE) of Iran's regulations, the construction of hydroelectric dams is an activity that requires an EIA report. In this paper the environmental impact assessment of the Gotvand hydro-electrical dam has been evaluated in the three environment elements, biological, Physical-chemical and cultural units. This dam is one of the largest dams in Iran with a volume of 4500 MCM and is going to be the last dam on the Karoon River in the south of Iran. In this paper the ICOLD (International Commission on Large Dams) technique was employed for the environmental impact assessment of the dam. The research includes all socio economical and environmental effects of the dam during the construction and operation of the hydro electric dam and Environmental management, monitoring and mitigation of negative impacts were analyzed. In this project the results led to using some techniques to protect the destructive impacts on biological aspects beside the effective long time period impacts on the biological aspects. The impacts on physical aspects are temporary and negative commonly that could be restored and rehabilitated in natural process in the long time in operation period.

Keywords—"*Gotvand* Hydro Electric Dam", "EIA", "ICOLD and Leopold matrices".

I. INTRODUCTION

A comprehensive Environmental Impact Assessment (EIA), since 1971 mandatory in a growing number of ICOLD1 member countries, ought to become standard procedure everywhere as part of project conceptualization, that is well before final design and the start of construction [1].

Economic, Social, Physical and Environmental change is

inherent to development. Whilst development aims to bring about positive change it can lead to conflicts. In the past, the promotion of economic growth as the motor for increased well-being was the main development thrust with little sensitivity to adverse social or environmental impacts. The need to avoid adverse impacts and to ensure long term benefits led to the concept of sustainability. This has become accepted as an essential feature of development if the aim of increased well-being and greater equity in fulfilling basic needs is to be met for this and future generations. The imperative for development to remedy these defects may be so great that consequent environmental degradation may be tolerated. With Iran as a water scarce country, with a mean annual rainfall of below 250 mm, the use of water has been critical to the development of the country's industrial base and wider economy and will remain so in future. However, due to past exploitation, and the increasing demand for water, the regulation of our water resources is essential [2]. Literatures indicate that the most negative impacts of large dam construction are loss in the ecological/biodiversity [3]:

a) Impact on the ecology of the freshwater system,

b) Loss in water bird habitat.

World Bank's estimate that roughly ten million people are displaced each year due to dam construction, urban development, and transportation and infrastructure programs [4]: This number is shockingly high, but it still fails to account for large numbers of the displaced. Displacement tallies almost always refer only to persons physically ousted from legally acquired land in order to make way for the planned project, ignoring those living in the vicinity of, or downstream from, projects, whose livelihoods and socio-cultural milieu might be adversely affected by the project [5].

It is during the dam operation phase - which can typically span 50 to 100 years - that the most severe impacts on fisheries and aquatic environments take place [3]. Produced comprehensive reviews of dam impacts on fisheries and aquatic ecology at global level, while carried out detailed analysis of the impacts of dams on aquatic environment and fisheries in Africa and South-east Asia. Impacts can be grouped into two categories: 1) impacts which affect fish directly, and 2) impacts which affect the fisheries environments (upstream river, reservoir, downstream river,

Ahmad Sayadi is with Faculty of Engineering, Tarbiat Modares University, Iran (corresponding author, phone: +98(21)82883546, fax: +98(21)82884324; e-mail: Sayadi@modares.ac.ir).

Ahmad Khodadadi Darban is with Faculty of Engineering, Tarbiat Modares University, Iran (phone: +98(21)82883399, fax: +98(21)82884324; e-mail: AKDarban@modares.ac.ir).

Sadegh Partani is with Modares Environmental Research Center-MERC, Tarbai Modares University, Iran (phone: +98(21)82883995, fax: +98(21)82884324, e-mail: Sadegh Partani@yahoo.com)

estuary, delta, sea) in some manner that leads to a deterioration in fish biodiversity, fish stocks and/or fisheries production. Thus a proper EIA report can predict the all environmental effects and propose the possible techniques for mitigation or reduction of negative effects [3].

There are three principal methods for identifying environmental effects and impacts: Checklists are comprehensive lists of environmental effects and impact indicators designed to stimulate the analyst to think broadly about possible consequences of contemplated actions. This strength can also be a weakness, however, because it may lead the analyst to ignore factors that are not on the lists. Checklists are found in one form or another in nearly all EIA methods. One of the most comprehensive is published in the United States [6]. Matrices typically employ a list of human actions in addition to a list of impact indicators. The two are related in a matrix which can be used to identify (to a limited extent) cause-and-effect relationships and flow diagrams are sometimes used to identify action-effect- impact relationships. The flow diagram permits the analyst to visualize the connection between action and impact. In this research the above three methods were used and the results were compared [2].

The forth and fifth National Development Program (NDP) of Iran call for the uniform protection of all significant water resources, and places emphasis on resource sustainability and integrated water resource management. Department of Environment (DOE) of Iran also required the necessity of EIA report for all hydro-electric projects to assist in their decision-making process. In this paper socio-economical and the environmental impact assessment of the *Gotvand* hydro-electrical dam has been evaluated. This dam is one of the largest dams in Iran with a volume of 4.5 billion m3 and is going to be the last dam on the *Karoon* River in the south of Iran. In this paper all socio economical and environmental effects of the dam during the construction and operation of the hydro electric dam have been discussed.

Of the types of development projects that bring about physical displacement, dams and their related infrastructure, including power stations and irrigation canals, stand out as the largest contributor to displace. All dams and reservoirs as many other human activities, become a part of their environment which they influence and transform to a degree and within a range that vary from project to project. Frequently seeming to be in opposition, but not necessarily irreconcilable, dams and their environment interrelate with a degree of complexity that makes the task of the dam engineer particularly difficult. The solution must be to find the golden mean by striking a balance between divergent and sometimes contradictory goals. We need dams and the many benefits which their reservoirs offer all over the world, by storing water in times of surplus and dispensing it in times of scarcity. Dams prevent or mitigate devastating floods and catastrophic droughts. They adjust natural runoff with its seasonal variations and climatic irregularities to meet the pattern of demand for irrigated agriculture, power generation, domestic and industrial supply and navigation.

II. PROJECT DESCRIPTION

The *Gotvand* Dam which is going to be constructed in the next few years as the last dam on *Karoon* River is located within the *Khozestan* Province South of Iran. This dam will have a surface of 96.5 km² with an approximate water volume of 4445 million m for the purposes of hydroelectric energy with the capacity of 4250 million KW, agricultural and recreational uses.

III. METHODOLOGY

Data Gathering

The research method involved formal and informal interviews with key informants within formal and indigenous institutions. These included key government officials, university professors, environmental consultants, nongovernmental organizations, and traditional leaders. Openended questions designed to identify constraints to EIA practice in the country were posed. These were supplemented with content analysis of secondary data and information from official publications and other related literature. Transcripts of interviews, field notes, and relevant literature were analyzed on the basis of themes and patterns of interrelationships among responses that addressed the research goal [7].

EIA Analyzing Method

The environmental assessment of *Gotvand* dam and its related installations began by analyzing the available environmental resources. In analyzing the environmental resources of watershed basins of region, the available maps together with land works were used. Furthermore, in the environmental impact analysis of the dam and its related installations, the method of ICOLD matrix was used. The aims of the prediction and evaluation stages of the EIA procedure are to identify those activities most likely to occur, and to determine the likely importance of these impacts, be they positive or negative. All the implementing activities in connection with the dam construction was predicted in the method, and after the land visit to the studying areas, a list of impacted environmental factors was made ready [2, 8].

The EIA evaluation was made for the important phases during the construction and after operation. The negative impacts of each activity on the environmental resources was then evaluated, and the results were examined. In this method, the environmental resources, which will be affected by "much" and "very much" negative impacts, have been identified. The activities, resulting in resources destruction, have been then specified (table I). Magnitude is a quantifiable measure of the size of an impact, and it can be defined as the degree of movement away from the baseline state of the specific environmental ICOLD has prepared a large and comprehensive matrix for use in EIA studies for dams. The system of symbols for each box shows: whether the impact; the probability of occurrence; the time-scale of occurrence; and, whether the design has taken the impact into account, [1]. This comprehensive approach, however, makes the final output rather difficult to use and a maximum of three criteria is recommended per impact to maintain clarity. Ahmad and Sammy suggest that the most important criteria are: magnitude, or degree of change; geographical extent; significance; and, special sensitivity [9]. "Significance" could be further sub-divided to indicate why an impact is significant. For example, it may be because of irreversibility, economic vulnerability; a threat to rare species etc. "Special sensitivity" refers to locally important issues component under consideration. Here the magnitude is expressed on a scale of 1 to 3. Significance is defined as a measure of how important the assessor feels any movement away from the baseline conditions to be. Significance is expressed on a scale ranging from highly detrimental (-5), through negligible (0), to highly beneficial (+5). On the basis of these scores all activities can be ordinal ranked [12].

In order to aid completion of the matrix, domain specific

information is presented to the user simultaneous to completing the matrix. This information is of three types: textual information specific to each environmental component (i.e. the vertical axis of the matrix), rule-based information relating to the primary and higher order impacts of specific activities (the horizontal component of the matrix), and baseline biophysical and socio-economic data relating to the project's location (further details are given below). This information is held within a relational database comprised of tables relating to environmental components, project types, activities, impacts, mitigation measures and their interrelationships. In addition the database contains textual information on each key item, i.e. activities and impacts. In the end, simple and implementable management mechanisms and strategies have been suggested to mitigate the negative impacts resulted from the project implementation. Thus, proper environmental management in the watershed of the region depends on the careful and complete implementation of these proposed mechanisms [10].

	THE ACTIVITIES, RESULTIN	IG IN RESOURCES DESTRUCTIO	N
Surface water hydrology	Aquatic habitats	Water supply	Socio-economics
Surface water quality	Aquatic wildlife	Food supply	Infrastructure
Groundwater hydrology	Terrestrial habitats	Fuel supply	Resettlement
Soil erosion	Terrestrial wildlife	Navigation	Indigenous cultures
Soil fertility	Coastal habitats	Recreation	Aesthetics
Geology	Marine life	Flood control	Noise
Sedimentation	Forests	Irrigation/drainage	Public health
Air quality	Protected areas	Agriculture	Nutrition
	Endangered species	Aquaculture	Archaeology
		Agro-industry	

TABLE I

IV. RESULTS AND DISCUSSION

An assessment of the potential and existing impacts of the extraction of water from the Gotvand Dam on the surrounding environment was based on existing information and specialist studies, the existing and potential impacts have been assessed as shown in Table II.

As indicated in Table II, the positive environmental effect received 12 crosses while the negative impact possible get 16 crosses; then it may be concluded that the Gotvand dam construction will have negative impact for the environment especially on biological element. however the number of positive impact especially in term of socio-economical impact significantly affect its negative ones.

The environmental effects of the Gotvand Dam construction on biological, physical and socioeconomic aspects using ICOLD technique is shown in Table III, IV and V, respectively.

The description of each sign, item and abbreviation of the ICOLD technique in Table III, IV and V is as the following [2].

I, II, III determine the priority of the waster consumption, the sign + and - show the negative or positive impact, no. 1, 2, and 3 indicate low, medium and high impacts respectively, C indicates the Certain impact, P indicates the Probable impact, I indicates the Improbable impact N shows the Non probable impact, P shows the permanent and T indicates the Temperate impact, L, M and I define Long term, Middle term and Instantaneous effect and finally Y shows the yield impact and N not defined impacts.

Based on above description the ICOLD matrices shown in Tables III, IV and V indicate the impacts of each activity of the Gotvand dam on physical, biological and socioeconomical environment.

The table III biological impacts demonstrates that (E501) vegetal destruction has the maximum effect while fun (E 506) and flora ranked less negative impacts.

The table IV physical impacts shows that (A207) vegetal destruction, (A208) raw material supply and (A301) discharging water vegetal area have the high negative impacts.

Water use in agriculture (A 101), tourism (A 403), industrial development (A415), fish industry (A 401) and infrastructure construction for the region (A 405) have the greatest positive impacts.

Vegetal destruction (A 207) has very negative impacts on the physical, biological and socio economical environment.

A change in the type, distribution and coverage of vegetation may occur given a change in the climate; this much is obvious. However, to what extent particular plant life

changes, dies or thrives, depends largely on the model of prediction used. In any given scenario, a mild change in climate may result in increased precipitation and warmth, resulting in improved plant growth and the subsequent sequestration of airborne CO₂. Larger, faster or more radical changes, however, may well result in vegetation stress, rapid plant loss and desertification in certain circumstances [11].

The biological impacts of the *Gotvand* reservoir are felt in the areas of weeds, and environmental health including bilharzia, malaria and onchocerciasis. Weeds different plant species usually proliferate with the execution of water projects. These aquatic weeds have very serious impacts on water supply and other reservoir based economic activitie. This has greatly contributed to the decline of fishing as an occupation in most settlements. Perhaps the most serious aspect of aquatic weed growth is its direct impact on the incidence and spread of water borne diseases such as schistosomiasis, encephalitis and filariasis.

	vironmental effect place a) in one of the columns	Positive impact very likely	Positive impact possible	No impact	Negative impact possible	Negative impact very likely	No judgment possible at present	Comment
		Α	В	С	D	E	F	
	1-1 Low flow regime							
	1-2 Flood regime							
Hydrology	1-3 Operation of dams	×						
	1-4 Fall of water table							
	1-5 Rise of water table				×			
	2-1 Solute dispersion				×			
	2-2 Toxic substances				×			
Pollution	2-3 Organic pollution				×			
	2-4 Anaerobic effects							
	2-5 Gas emissions							
	3-1 Soil salinity							
	3-2 Soil properties							
Soils		l						
Sons	3-3 Saline groundwater							
	3-4 Saline drainage				×			
	3-5 Saline intrusion				×			
	4-1 Local erosion				×		l	
	4-2 Hinterland effect	-					l	
Sediments	4-3 River morphology							
Seaments	4-4 Channel regime							
	4-5 Sedimentation							
	4-6 Estuary erosion							
	5-1 Project lands							
	5-2 Water bodies							
	5-3 Surrounding area							
	5-4 Valleys & shores							
Ecology	5-5 Wetlands & plains							
	5-6 Rare species				×			
	5-7 Animal migration							
	5-8 Natural industry	×						
	· · · · · ·							
	6-1 Population change	×						
	6-2 Income amenity	×						
	6-3 Human migration					×		
<i>a</i> .	6-4 Resettlement				×			
Socio-	6-5 Women's role							
economic	6-6 Minority groups	×					×	
	6-7 Sites of value	×						
	6-8 Regional effects	×						
	6-9 User involvement	×						
	6-10 Recreation		×		1	1		
	7-1 Water & sanitation	×		1	1			
	7-2 Habitation	×						
	7-3 Health services	×				1	1	
	7-4 Nutrition	×			1		1	
Health	7-5 Relocation effect				1		1	
mului	7-6 Disease ecology				×			
	7-0 Disease ecology 7-7 Disease hosts	1			×	1	1	
	7-8 Disease control	<u> </u>	×		<u>^</u>		1	
			^					
	7-9 Other hazards							
	8-1 Pests & weeds				×		l	
	8-2 Animal diseases				×			
Imbalances	8-3 Aquatic weeds				×			
	8-4 Structural damage				×		L	
	8-5 Animal imbalances				×		L	
	Number of crosses	12	2	1	16	1	1	(Total = 3

TABLE II

ч
þq
. <u>0</u>
2
11
60
or
et.
asi
×.
JS.
<u>ē</u>
at
E:
qn
Ы
60
ŏ
3
ë
2°
ol:3, N
E:
Vo
60
ů
.Ц
je
. <u></u>
En
Ξ
ca
. <u>5</u> 0
9
ğ
щ
pu
la
ta
en
Ē
on
Ę.
ĥ
Щ
eX,
ıdε
Ц
ce
SD
сĭ
Š
en
dC
\cup

E610	rare and extincting typ								П	1,		_ ≻	Г		-2CPTY	Ve	1:3		me	:6,	JPPMY 2	09				+1CPMY				+1PPMY		-1 PMY 0	-1 PPTV	+1PPMY	+1PPMN	-2РРТҮ	-1 РРТҮ	-1PPLN		+1PPMN		+1PPMN				1 DDMV
E609	ຣເມຣເມສດີເດ-ດາວແມ										+TCPMY	-1CTIY			-1CTIY				+1CPMY						-1РРТУ	+1CPMY				+1PPMY			+ ICPWIT	-1CPMN	+1CPMN	-2CTIY	-1РТІҮ			+2CPMN	-2CPMY	+2CPMY	+1CPMY			VINDAUV
E608	suotynelqooz	+1CPMY		+1 CPMY	-IFFMI -1PPMY		-1CPMN	-1PPMY				-1CTIY	-1PTIY	-1РРТҮ	-1РТІҮ	-2CTIY			+ZCFIMI +1CPMY		-1PPMY		+2CPTY	+2CPTY	-1PPTY	+2CPMY				+2PPMY			+ZUPINI -1PPTV	+1CPMN	-2CTIY	-1PTIY	-2PPMN			-2CPMN	-1PPMN	+2CPMY				10100
ina E607	macroinvertebrate	+1PPMY			-1PPMY			-1PPMY				-1CTIY			-1CTIY	-1CTIY			+1PPMY		-1PLMY		+1PPMY			+1PPMY					+2CPMY	-1PPLY	+IPPIMT	+1CPMN	+1CPMN	-1РТІҮ	-10TLY			+2CPMY						
errestrial and Aquatic tauna E605 E606 E6	other fishes				-1PPMY		+1PPMY	-1PPMY		-1CPMY		-2CTIY	-2CTIY		-1РРТҮ	-2CTTY			-1PPMY		-1РРLҮ		-1CPTY	+2CPMY		+2CPMY				+2CPMY	+3CPMY		-1PPTV	+1CPMN	+2CPMN	-2CTIY	-2PTIY	-2PPMN		+2CPMY						
E605	economical fish	-1CPMY			-1PPMY		+2CPMY	-1PPMY		+3CPMY		-1CTIY	-1CTIY	-1CTIY		-1CTIY			+3CPMY				+2CPLY	+2CPLY		+2CPMY				+3CPMY	+2CPMY			+1CPMN	+2CPMN	-2CTIY	-2CTIY	-2РРМҮ		+2CPMY		+2CPMY	+1PPMY			
E604	səlitqəЯ				-1PPMY							-1CTIY			-1CPTY	-1CPTY			+1PPMY				-1CPLY	-2CPTY		+1PPMY					+1CPMY	-1PPLY	-1CPTV	+2CPMY	+1CPMN	-1PTIY	-1PTIY	-1PPLN		+1PPMN						
E603	insects	+1PPMY	-1PPMY		-1 PPMY			-1 PPMY		+1PPMY		-1CTIY	-1 PTIY		-1CTIY	-1CTIY			+1CPMY		+1PPLY		+1CPLY			+2CPMY					+2CPMY		+IPPWIT	+1CPMY	+1CPMN	-2PTIY	-1 CTIY		+1PPMY	+3CPMY	-1 PPMN					
E602	birds		+1PPMY		-1CPMY		+1CPMY	-1PPMY		+2CPLY		-2CTIY			-2CPTY	-1CPTY		VANDO 4.	+1CFMT +1PPMY		+1CPLY		+1CPTY			+1CPMY				+2PPMY	+2CPMY	-ZPPLY	-20.077	+2CPMY	+1CPMN	-1PTIY		-1PPLN	+1PPMN	+2CPMY	-1PPLN	+1PPMN				AN 1000
E601	slemmem		+1PPMY				-1PPMY	-1PPMY		+1CPLY	-10PLY	-1PTIY			-1CPIY	-1PTIY					+1PPLY		-1CPIY	-1CPIY		+1PPMY					+1PPMY	-1PPLY	-1CPIV	+1CPMY	+1CPMY				NMHH1+	+1PPMY						
E509	other plants											-1PTIV	-1PTIY	-1РРІҮ	-2CPTY	-2РРТҮ		VVUDUT.					+1PPTY	+1PPTY		+1CPMY					+2CPMY	-1PPLY		+1PPMY	+1PPMY	-2PTIY			+1PPMY	+1PPLN		+1PPMN				
E508	rare and extincting pla							-2РРLУ				-1PPTY	-1PPTY		-3CPTY	-2РРТҮ		VADOA.	+10PMY		-1РРLҮ		-2РРТҮ	-2РРТҮ		+1CPMY					+2CPMY			+1PPMN	+1PPMN	-2PTIY	-1РРТҮ	-1PPLN	+ZPPMY	+1PPLN	-1PPLN	+1PPMY				
E507	snotgnalqotyd	-1РРМҮ		+1CPMY	-2PPMY		+1CPMN	-1PPLY				-2CTIY	-1CTIY	-1РРІҮ	-1РТІҮ	-2CTIY			+20PMY				+1CPTY	+2CPTY	-1PPTV	+1CPMY				+1PPMY	+2CPMY			+1CPMN	+1 CPMN	-2CTIY	-1CTIY	-1PPMN	+1PPMN	+2CPMN	-1PPMN	+2CPMY				AN 1000
atic Flora E506	active plants			+1CPMY	-2PPMY		+1CPMN					-2CTIY	-1CTIY	-1РРТҮ	-1PTIY	-2CPTY			+2UPMY				+2CPTY	+2CPTY	-1PPTV	+2CPMY				+1PPMY	+2CPMY			+1CPMN	+2CPMY	-3CTIY	-1CTIY	-1PPMN	+2CPMY	+2CPMN	-1PPMN	+2CPMY				
al and Aquatic Flore	organic plants	+2CPMY			-1PPMY					A 1900	+3CPLY	-2CPTY	-1 PPTY	-1 РРТҮ	-3CPTY	-2CPTY							+1CPTY	+1CPTY	Y MHHH						+2CPMY		1 M 4 4 1 +	+2CPMY	+1CPMY	-2CTIY		-1PPMN		+1PPMN	-1CPMN	+1CPMY				
E504 E	agricultural lands	+3CPMY	+1PPMY							+3CPMY		-2CPTY	-1PPTY			-1РРТҮ			+3CPMY		+2CPMY		-1CPTY	-2CPTY	-1PPMV			-1PPLN				-1PPLY	-1PPTV	-	+1CPMY		+2РРТҮ	-1CPLN	+ZPPMY		-1PPLN	+2CPMN	+2CPMY		+2CPMY	
E503	grass plant growth				-1PPMY					-1CPTY		-2CTIY	-1CTIY	-1СРТҮ	-1CPTY	-2CPIY			-1CPMY		+2CPLY		-1CPTY	-1CPTY	+1CPTY	-1CPTY					+1CPMY		+IPPWIT	+1CPLY	+1CPLY		+1PPMY	-1CPMN	+1PPMY	+2CPMN	-1PPLN	+1PPMN	+1PPMY			
E502	sbnsi bəzunu bns bəzsələr									-1CPTY		-1CTIY	-1PTIY	-1РРТҮ	-1CPTY	-1CPTY			-2CPMV				-1CPTY	-1CPTY		-1 PPMY								-			+1PPMY	-1CPMN								
E501	əlbnui		+1IPMY							-1CPTY	-3CP1Y	-1CPTY	-1 PPTY		-3CPTY	-2CPTY			-3CPTV		-1CPTY		-2CPTY	-3CPTY	YIMPHT-							-1РРСҮ	-2CPTV	+1CPMY	+1CPMY		+1PPMY			+1PPMN		+1PPMN				
	water usage priorities	_	=	=	= =		=	:		am	unetru netion	ion		gs at the dam site			lids	to tourbines	diversion system		water conveyand			ervoir	river	river	s			ement	ental overflow	ent	ariations						ntrolling the river	of the basin	n	nting their damag		Ing		
	task	irrigation	energy		industrial usages	marine transport	fire station	water sports		being of reservoir dam	dam reservoir diversion svetem during construction	dam site construction	coffer dam	emporary and permanent buildings at the dam site	deforresting and bush cutting at the dam site	borrow area extraction	way for boyance solids	water conveyance channels to tourbines	intact system and permanent div	Dower lines	diversion dam and channel and water conveyand-1CPTY	other factors	Imerged Lands	adjacent areas at reservoir	water level variations of reservoir reservoir-instream river	reservoir-downstream rive	irrigation channels	groundwater	other lands	fish production management	guarantee for safe-environmental overflow	I ounsm development	CONTROLLING OF WAREN LEVEL VARIATIONS	Foresting aroun the res	erosion control with terrace making, planting	dragging	dam's spillway	Chech dam	compensative reservoirs for controlling the river	controlling and conservation of the basin	water detoxificatio	improve the industries and preventing their damaged	rehabitation	other damage rerining	reassessment to the land value	
		A101	A102	A103	A105	0	A107 A108	A109	A110	A201	A202	A204	A205	A206		_	A209	A210	A212	A213	A214	A215	A301	A302	A303 A304	. <	A306	A307	A309	A401	A402	A403	A404	A406	A407	A408	S	A410	A411	A413	A414	A415	A416	A417	502	
					Water Constime											physical Factors										Affected Areas											physical Restoratio							I and Arts		

World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering

Climate	101	snoitaitav laciol				-ZHHLY	T	T				Ĺ	+2PPLY					-1PTIV		T				1:3									col	08				+1PPI Y	1				5				T				
CI	E309 E40	ground water lev	2 PPLY			-2CPLY +2	╞	$\frac{1}{1}$		ŀ		≻	-1CPLY +2		-1PTIY	1PTIY		-1 CTIY -1F	T		ŀ	+2CPLY	Ŧ				2CPMY +2	+	-1CPMY		2CPMY	2PPI V				+2CPMY		+	HCPLY	+1CPMY		F2CPMY		+2CPMY			╉	T			
	E308 L	water loss	-2 CPMY	-1CPMY		-1PPMY						Ľ	+3CPMY -		-1CTIY -	ľ		-1CTIY -	L			ľ	+2CPMY -:		+2CPMY	t						ľ				ć	Ţ		+1CPLY +	+2CPMY +		-2PPMY +		+1PPMY +		+2CPLY	111100	-2CPMY			+1PPMY
	E307	wolt nevin		-1PTMY		-1CPMY						-2CPTY	-1CPMY		-2CTIY	-1CTIY		-1PTIM	-1CTIV			-1РРМҮ	-2CPMY		-1CPTY		-2CPTY	-1CPTY	-2CPMN	-1CPMY						+2CPMY	TCDMV	5	+1CPLY	+1CPMY		+2CPMY		+2CPMY				+1PPMY +1DDMV			
watc	E306	Evaporation	-1 CPMN			-2CPMY -1PPIY						-2CPLY	-2CPLY			-1PTIY							-2CPLY				-2CPMY															+1PPMY									
	E305	Tempereture		-2PPMY	-	-2PPLY						-2РРЦҮ	-2РРLY		-1PTIY							+2PPLY	-2PPLY				 -2PPLY 				-1PPMN					+1CPMY						+1PPMY	-	+1PPMY			1000	+ZCPMY			
	E304	Turbidity	-1 PPMY			+1 CPMY			-1 CPI Y	5	-1 PPMN	+2 CPLY	+2 CPLY	-1 CTIY	-2 CTIY			-2 CTIY	-1 CTIV	5			+2 CPLY		+1 CPLY		+2 CPMY	-1 PPMY	-1 PPMY	-1 PPMY	-1 CPMY				-1 PPMY	-1 CPMY	7747 I-	-1 PPMY	+2 CPLY	+2 CPM	-2 CTLY	-2	-+2 CPM				Ŧ		-		+1 PPMN
	E303	v tinilsz	-1РРLҮ			-2 PPLY						-2 РРLҮ	-2 РРLҮ					-1 PTIY	-1 TTV			+1 CPLY			-1 РРLY		-2 PPLY	-1 РРLҮ		-2 PPLY	-1 РРСҮ					+2 CPMY	-1 PPLY		+2 CPLY	Y +2 CPMY		+2 CPMY		1-PPMY				+1 PPMY	_		+1 PPMN
	E302	Physic and cher				-2 CPMY			-1 PPI Y	-1 PPMY	-1 PPMN	-2 CPLY	-2 CPLY		-2 CTIY	-2 CTIY		-2 CTIY	-1 PTIV			-1 PPMY	-2 CPLY		-1 CPLY		-2 PPMY	-1 PPMY		-1 PPMY					-1 РРLҮ	+2 CPMY	VM44 1-		+1 PPLY	+1 PPLM	-1 CPLY	+1 CPMY		+2 CPMY		+3 CPMY	YMHH 1+	+2 CPMY	5		+1 PPM
	E301	water biology				-2 PPMY -1 CPMV			-1 PPMY		-1 PPMN	-2 PPLY	-2 CPLY		-1 PTIN	-1 PTIN	-1 PTIY	-1 CTIY				-1 CPMY	-2 CPLY		-1 CPLY		-2 PPLY	-1 PPMT		-2 PPMY	-1 РРМҮ				-1 CPMY	+2 CPMY		0.4	-1 PPLY	+1 PPMY		+1 PPMY	+1 PPMY	+1 CPMY		+1 PPMY	+2 CPMY	+2 CTMV			+1 PPMN
	E213	ofher cases																																																	
	E212	Flactuation of Ws	-1CTIY	-1 CTIN								+3 CPMY																																							
	E211	drainage and lar	-2 РРLҮ			-2 PPLN -1 PPLN						-1 РРLY	-1 РРLY	-1 CTIY	-2 CTIY	-1 CTIY	-1 CTIY	-2 CTIY	-> CTIV	04						-2 CPMY	-1 PPMY	-2 CPMY		-1 PPMY					Ŧ	-1 CPLY		+2 CPI Y	+2 CPMY		+2 PPMY		+1 CPMY					+1 P I MΥ			
	E210	orew deoworbyol	-1 CPLY									-2 CPIY	-1 CPMY	-2 CTIY	-1 CTIY	-1 CTIY		-1 CTIY	-> CTIV	0 4		-2 CPMY		-1 CPIY		-2 CPMY	-1 CPMY		-1 CPTY	-1 CPTY					+2 CPMY	-1 PPLY		+2 CPI Y	+2 CPMY	-1 PTLY	+1 PTMY	-1 CPMY	+2 CPMY			+1 CPMY	YM44 1+	+1 PIMY			41 PPI V
	E209	booft				+3 CPMY						+3 CPMY	+3 CPMY	-1 CTIY	-1 CTIY			-2 CTIY	-> CTIV	04	-1 PPNY	+2 CPLY		+2 CPMY		+2 CPMY										-1 PPLY	VNDD 1-	+3 CPI Y	+3 CPMY	-1 PTLY	-2 PTMY		+2 CPMY					+1 P I MY			1 PPMN
hacis	E208	noiteniles lios	-2 РРLҮ									-1 РРLУ																				-1 PPI Y														+1 CPLY					
priysical III	E207	inductive earthqu				-Z CPMN						-2 PPMY	-3 PPMY									-3 PPMY				-2 PPMN																									
Dao	E206	yilidste eqole	-1 PPMY			NM44 L-					-1 PPMN	-1 CPIY	-2 CPIY	-1 CTIY	-2 CTIY	-1 CTIY	-1 CPIY	-2 CTIY	-2 CTIV	04	-2 CPMY			-1 CPMY		-2 PPIY	-1 PPIY		-1 CPIY	-1 CPMY					-1 PPMY	-1 PPMY		+2 CPI Y	+2 CPMY	-1 CTLY	-1 CTMY					-1 CPMN	YM44 1+	ү МЧЧ 1+			12 CDMV
	E205	ni noitstnemibeS				-2 CPLY			-1 CPLY	5	-1 РРLY	-2 CPLY	-2 CPLY					-2 CTIY	1- CTIV	0	+1 PPMY	-2 CPLY		-2 РРLҮ		-1 CPMY	-1 CPMN							-1 CPLY	+2 CPMY	-1 PPLY		+2 CPMY	+2 CPMY		+1 CPMY	+3 CPMY				+2 CPMY					+1 CPMN
	E204	River bed load	-1 CPMY			-1 CPMN			-1 CPLY	5	-1 PPMY	-		-2 CTIY	-2 CTIY	-1 CTIY		-3 CTIY	-> CTIV	04	-1 CPMY	-1 CPMY		-1 PPMY										-1 PPMY	-1 CPMY	-1 PPLY		+2 CPI Y	+2 CPMY		-2 CTMY	`+	-1 PPMN			+2 CPMY	+1 CPMY	+1 CPMY			+1 PPMN
	E203	ibəS bəbnəqsus	-1 CPMY			-1 CPMY					-1 CPMN	-1 CPMN	-1 CPMN	-2 CTIY	-2 CTIY	-1 CTIY		-2 CTIY	-> CTIV	04	-2 CPMY	-1 CPMY		-1 CPMY		-1 CPMN	-1 PPMY		-2 PPIY	-1 PPMY				-1 PPMY	-1 CPMY	-1 PPLY		+2 CPI Y	+2 CPMY	-2 CPLY	-1 CTMY	+2 CPMY	-1 PPMN			+2 CPMY	+1 CPMY	+1 CPMY			+1 PPMN
	E202	erosions	-2 CPMY		10,000	-2 CPMY					-1 PPMY	-1 CPIY	-1 CMPY	-2 CTIY	-2 CTIY	-1 CTIY		-2 CTIY	-> CTIV	04	-1 CPMY	-2 CPMY		-1 CPMY		-2 CTIY	-2 CTIY		-1CPIY	-1 CPMY					-1 CPMN	-1 РРLҮ	VMDDC-	+2 CPI Y	+3 CPMY	-2 CTLY	-1 PPMY	-1 CPMY	-1 PPMN			-1 CPMY	+1 CPMY	+1 CPMY			+1 CPMV
	E201	ოიიხისებუ	-1PPMY			-1CPIY						-1CPMY	-1CPMY	-1CTIY	-2 CTIY			-2 CTIY		04		-1 CPMY		-1 CPMY		-1 CPMY	-1 CPMY			-1 CPMY						-1 PPLY		+1 CPI Y	+1 CPMY					0	_			NM44 1- IU			+1 PPLY
		priodity of water consumptions		=	-				=		suc	· dam	ir	construction	ction		inds at the dam	at the dam site	uction	solids	Is to tourbines	¥	t diversion system		d water conveya		1s	servoir	of reservoir	n river	am river	SID .			agement	mental overflow	ment Lyariatione	S	reservoir	making, planting		y.		ontrolling the rive	um against floatir	on of the basin	ation	venting their dar	ining		and value
_		Task	irrigation	energy	ulating wate	industrial usages		fro ototion	fishing	water sports	other consuptions	being of reservoir dau	dam reservoir	diversion system during construction	dam site construction	coffer dam	mporary and permanent buildings at the dam	deforresting and bush cutting at the dam site	borrow area extraction	way for hovance solide	water convevance channels to tourbines	water releaser	intact system and permanent	power lines	liversion dam and channel and water conveya	other factors	Imerged Land	adjacent areas at reservo	water level variations of reservoir	reservoir-upstream	reservoir-downstream rive		sea coasts	other lands		guarantee for safe-environmental	I OURISM DEVELOPMENT	Infrastructures	Foresting aroun the r	erosion control with terrace making, planting	dragging	dam's spillwa)	Chech dam	compensative reservoirs for controlling the rive	e the dam equilibri	controlling and conservatio	water detoxifica	prove the industries and preventing their dam	other damage refi	taxes	auley back at the massage of the
			A101	A102	A103	A104 A105	ŝŝ	A105	A10/ A108	A109	A110	A201	A202	A203	A204	A205	A206	A207	1.7		A210	A211	A212	A213	A214	A215	A301	A302	A303	A304		A307	A308	A309	A401	A402	A403	A405	A406	A407	A408	on A409	A410	A411	A412	A413	A414	A415 A416	A417	501	502
							Water Consume:												physical Factors												Affected Areas											hysical Restoration								Legal Acts	

Open Science Index, Environmental and Ecological Engineering Vol:3, No:6, 2009 publications.waset.org/11266.pdf

[E116							-1CPMY			-1PTIN	-2CTIY		111 17-				-27442				-1CTIY	-2CPMY				-1PPLY									Ι	+2CPMY		+2CPLY		+1PPMY	+101141		+1CPMY
	E115				+3CPMY					+3CPLY +3CPLY	-1PTTY	-1CTTY		-2CTTY	-1CTIY			YM441-		+2CPLY		+2CPMY	+2CPMY		-1CPMY							-1PPLN		+2CPLY		+1CPMY	+1CFM1				+1CPLN			+2CPMY
	E114	reduction and growth o	+2CPLY	+3CPLY	+2CPMY			+ ICPMY +1CPMY		+1CPMY		-1CPIY								+1CPLY		-1CTIY	-1CTIY						+2CPLY		+ZUPLY	+1CPLY					+1CPMY				+ZUPLY +2CPMV	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		+2CPLY
	E113	Inemtsevni bns esstroug bns.	+1CPLY		+1CPMY			+ ICPMY +1CPMY															-1CPIY		-1CPLY		-1РРСҮ		+2CPMY	+2CPLY		+1CPMY				+1CFMY	+1CPLY				+ZCPLY	- 21		+2CPMY
s	E112	(ulden ununu																												+1CPMY														
ENVIRONMENTAL EFFECTS OF THE GOTVAND DAM CONSTRUCTION ON SOCIOECONOMIC ASPECTS	E111	SOIDAUISAM								TOPMA	-1CTIY	-2CTIY	-1CTIY	-IF IIT -2CTIY	-1CTIY			+1CPMY					+2CPMY		-1CPMY												+2CPMY				+1CPMV			
ONOMIC	Effects							+ ICPLY		-1PPIM		-1CPIY							+1PPMN				-2CPIY							+2CPMY	+ZUPMY	+1CPLY		+1PPLN							1 JCPI V	+20111		
SOCIOEC	E 109		+1CPMY	+3CPMY	+1PPMY			+2CPMY		+ JC DI V	T	-1PTIN		-1CTIY								-1CPIY	-1CPIY		-1PPLY						+ZUPMY	+1PPMN		+1PPMN		+1CPMN	+1CPMY		+1CPLN		1 DPMN			+1CPMY
NO NOL	E108		+2CPMY		+2CPMY			+ICPMY		+2CPMY	-1CTIY	-1CTIY		-2CTIY						-1CPMY			-1CPIY				-1PPLN		+2CPMY	+2CPMY		+2CPLY		+1CPMN		+1CPMY	+2CPMY					+205 L-		+2CPMY +1CPMY
NSTRUCT	Social, E	increase in land value	+1CPMY		+1CPMY			+1CFMY +1CPMY		+2CPLY										+1CPLY		-1CPIY	-2CPIY						+1CPMY	+1CPMY	+1CPLY	+2CPLY				+1CPMY	+1PPMN		+1CPLN			+20F LI		
DAM CON	E106	Local Income	+2CPMY	+ZUPMY	+1CPLY	171071		+ICPMY		+2CPMY +1CPMV			+1PTIN	-2CTIY	+1PTIN			+1PPLN		+1CPMY			-1CTIY						+2CPMY	+1CPLY		+1CPLN		+1PPLN		+1PPLN	+1CPLN			2001	+1CPLY	+201L1		+2CPMY +1CPLN
tvand I	E105									-1CTIY		-1CTIY		-1CTIY	+1PPIN				+1CPMN				-1CPIY								+1CPLN	+2CPLY									+1CPLN	, 1 1 1		
THE GO	E104	מפונסונסונס מווס	+3CPMY	YMAAL+	+3CPMY					+3CPMY		-1CTIY		-1CTIY			1000	+ZUPMY		+2CPLY		-1CITIY	-1CTIY				-1РРLY		+2CPMY	+1CPMY		+2CPMY		+1CPLN			+1CrLN				10CPI V	+205 L		+2CPMY +1CPMN
ECTS OF	E103			_	+1PPLY			+2CPINT +3CPLY		+2PPLY +1PPLY		-1CTIY		-1CTIY				+10PLY		+1PPLY			-1PTIN									+2CPLY		+1CPLN		+1PPLN	+1PPLN +1CPLN							+2CPMY
TAL EFF	E102	wowloadwo	+2CPMY		+2CPMY -	5	Η.	+1CPMY -		+3CPLY -					+2CTMY -			- 		+2CPMY -			-1CITTY -		1PPLN		-1PPLN		+2CPLY				Ľ.	+1PPLN -			zz					+20711		+1CPLN
RONMEN	E 101	preprements or dam construction	+2CPMY		+1PPLN -			+1PPLN					+1PTIN		+2CTMY -				1CTTY				-1CTIY -		1PPLN -		-1PPLN -		+2CPLY -	~	+2024	+2CPLY -	+1CPLN -		_,	+1CPMY -	+1PPMN			,		-		+1CPLN
TABLE V- ENVII		səitiroirq əgaədə vətər	_ =	=	= =			Ē		am	c		o mob	n site			to tourbines	iversion svetam		water conveyar				river	river -					rflow				nting		Ţ	ne rive	floatin	m l	1.1	r dami-			res
TAB		tas k	irrigation	energy regulating water	balancing river flow	marine transport	fire station	water sports	other consuptions	being of reservoir d	diversion system during constructio	dam site construction	coffer dam	defortesting and bush cutting at the dar	borrow area extraction	way for boyance solids	water conveyance channels to tourbi	Water releaser	Intact system and permanent or power lines		other factors	Imerged Surfaces	adjacent areas at reservoi	vater level variations of reservoir reservoir-ubstream river	reservoir-downstream rive	irrigation channels	groundwater	other lands	fish production management	guarantee for safe-environmental ove	I ourism development	Infrastructures	Foresting aroun the reservoir	erosion control with terrace making, pla	dragging	dam's spilway	Cnech dam compensative reservoirs for controlling th	pm to serve the dam equilibrium against	controlling and conservation of the basin	water detoxificatic	pprove the industries and preventing the	other damage refining	taxes	reassessment to the land value planning for civilian and rural measu
		μ μ	A101	A103		A106	A107	A 109	A110	A201	A203	A204	A205	A207		A209	A210	C12A	A213 A213	A214	A215	A301	A302	A304	A305	A306	A307	A309	A401	A402	A403	A405	A406	A407			A410 A411	A412	A413	A414	A415	A410 A417	501	502 503
						Water Consumes									physical Factors										Affected Areas										actional Doctoration	pnysical Kestoration								Legal Acts

VSP	
IIC A	
MO	
^N	
IOE	
SOCIOECONOMIC /	
NON	
NO	
CTI	
TRU	
ONS	
Õ	
AM	
DD	
VAND	
GOTVAND	
VTAL EFFECTS OF THE GOTVAND	

V. CONCLUSION AND RECOMMENDATIONS

There are three main groups that require the water resource from the *Gotvand* Dam: Hydro-electric power generation, Agriculture, Industry and Tourism. In analyzing the environmental impact of *Gotvand* dam, the available maps together with land works were used. Furthermore, in the environmental impact analysis of the dam and its related installations, the combining method of Leopold and ICOLD matrix was used. All the implementing activities in connection with the dam construction, was predicted in the method, and after the land visit to the studying areas, a list of impacted environmental factors was made ready.

The discussions highlight specific avenues to improving the EIA procedure in Iran and much of the developing world. A contentious issue is the need to include local people and their experiential knowledge in the EIA process. Indigenous experiential knowledge not only has the potential to complement Western scientific knowledge in ways that would improve assessment studies; it could also encourage local participation and bottom-up approaches to environmental and planning decisions. The involvement of local people may also help the assessment team to understand local resource-use and nuances, and use local value sets to interpret, evaluate, and monitor project impacts on local communities. If indigenous knowledge is to be preserved and passed from generation to generation, it will have to be recognized by institutions of power and influence. Policy makers would have to learn that indigenous knowledge is not just a relic of the past, but is something that is important now and will be worth having in the future. To achieve this, education must be geared toward the transmission from one generation to the next of the accumulated wisdom and knowledge of society, and the preparation of the young for effective participation in society's maintenance and development. In this sense, EIA could become part of the solution to the continued loss of indigenous knowledge by enhancing the participation of indigenous people in assessment studies.

The negative impacts of each activity on the environmental resources were then evaluated, and the results were examined. In this method, the environmental resources, which will be affected by "much" and "very much" negative impacts, have been identified. The activities, resulting in resources destruction, have been then specified.

In the end, simple and implement able management mechanisms and strategies have been suggested to mitigate the negative impacts resulted from the project implementation. Thus, proper environmental management depends on the careful and complete implementation of these proposed mechanisms.

ACKNOWLEDGMENT

We thank the Modares Environmental Research Center (MERC), Tehran, Iran, which funded this study and guaranteed this project and field study.

REFERENCES

- [1] ICOLD. 1980. Dams and the environment. ICOLD Bulletin 35. Paris, France
- [2] Canter, L. W. (1977) Environmental Impact Assessment. McGraw-Hill: New York. 331 pp.
- [3] Bernacsek Garry M. et all. (2001), "Environmental Issues, Capacity and Information Base for Management of Fisheries Affected by Dams", Dams, fish and fisheries: Opportunities, challenges and conflict resolution, ISBN 92-5-104694-8
- [4] World Bank Environment Department (WBED), Resettlement and Development: The Bank wide Review of Projects Involving Involuntary Resettlement, 1986-1993. Environment Department Paper No. 032, Resettlement Series. Washington, D.C.: World Bank, 1996.
- [5] Scudder, T. 1996. 'Development-Induced Impoverishment, Resistance and River-Basin Development', in Christopher McDowell (ed.), Understanding Impoverishment, Providence, Oxford: Berghahn Books.
- [6] AEC (1973) General environmental sitting guides for nuclear power plants, Draft for discussion, U.S. Atom Energy Comm., Washington, D.C. 130 pp.
- [7] Brown, A L, and R Thérivel (2000), "Principles to guide the development of strategic environmental assessment methodology", Impact Assessment and Project Appraisal, 18(3), September, pages 183– 189
- [8] Bishop, A. B. (1973) Public participation in environmental impact assessment, Paper presented at Eng. Foundation Conf. on Preparation of Env. Impact Statements, New England College, Henniker, New Hampshire, U.S.A., July 29-Aug.3.
- [9] Ahmad. Y. J. and Sammy, G. K. (1985), Guidelines to Environmental Impact Assessment in Developing Countries, London, Hodder and Stoughton.
- [10] Yardley, J. 2005. Squabbling continues over building of large dam in China: pro-development advocates vs. environmentalists.
- [11] Soemarwoto, O. (1974) Population and environment. In: Third Seminar on Biology (Indonesia). In Indonesian with English summary.
- [12] Dooley, J. E. (1978) A framework for environmental impact identification. Unpublished manuscript. 8 pp.