Search results for: Intrusion Detection Information Exchange
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5528

Search results for: Intrusion Detection Information Exchange

4748 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 297
4747 Information Resource Management Maturity Model

Authors: Afshari H., Khosravi Sh.

Abstract:

Nowadays there are more than thirty maturity models in different knowledge areas. Maturity model is an area of interest that contributes organizations to find out where they are in a specific knowledge area and how to improve it. As Information Resource Management (IRM) is the concept that information is a major corporate resource and must be managed using the same basic principles used to manage other assets, assessment of the current IRM status and reveal the improvement points can play a critical role in developing an appropriate information structure in organizations. In this paper we proposed a framework for information resource management maturity model (IRM3) that includes ten best practices for the maturity assessment of the organizations' IRM.

Keywords: Information resource management (IRM), information resource management maturity model (IRM3), maturity model, best practice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
4746 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.

Keywords: Data science, fraud detection, machine learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
4745 Carbon-Based Electrodes for Parabens Detection

Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea

Abstract:

Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.

Keywords: Carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
4744 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities

Authors: Kung-Jen Tu, Danny Vernatha

Abstract:

To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.

Keywords: Sensor, electricity sub-meters, database, energy anomaly detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
4743 Positive Analysis on Vulnerability, Information Security Incidents, and the Countermeasures of Japanese Internet Service Providers

Authors: Toshihiko Takemura, Makoto Osajima, Masatoshi Kawano

Abstract:

This paper includes a positive analysis to quantitatively grasp the relationship among vulnerability, information security incidents, and the countermeasures by using data based on a 2007 questionnaire survey for Japanese ISPs (Internet Service Providers). To grasp the relationships, logistic regression analysis is used. The results clarify that there are relationships between information security incidents and the countermeasures. Concretely, there is a positive relationship between information security incidents and the number of information security systems introduced as well as a negative relationship between information security incidents and information security education. It is also pointed out that (especially, local) ISPs do not execute efficient information security countermeasures/ investment concerned with systems, and it is suggested that they should positively execute information security education. In addition, to further heighten the information security level of Japanese telecommunication infrastructure, the necessity and importance of the government to implement policy to support the countermeasures of ISPs is insisted.

Keywords: Information security countermeasures, information security incidents, internet service providers, positive analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
4742 Maximum Entropy Based Image Segmentation of Human Skin Lesion

Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam

Abstract:

Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.

Keywords: Shannon, Maximum entropy, Renyi, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
4741 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Das Gupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
4740 A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (Multi Layer Perceptron) method.

Keywords: Adaptive Control, Morlet Wavelets, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
4739 Computing Entropy for Ortholog Detection

Authors: Hsing-Kuo Pao, John Case

Abstract:

Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.

Keywords: compression, decision tree, entropy, ortholog, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
4738 Capacity Optimization in Cooperative Cognitive Radio Networks

Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis

Abstract:

Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.

Keywords: Cooperative networks, normalized capacity, sensing time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
4737 A High Bitrate Information Hiding Algorithm for Video in Video

Authors: Wang Shou-Dao, Xiao Chuang-Bai, Lin Yu

Abstract:

In high bitrate information hiding techniques, 1 bit is embedded within each 4 x 4 Discrete Cosine Transform (DCT) coefficient block by means of vector quantization, then the hidden bit can be effectively extracted in terminal end. In this paper high bitrate information hiding algorithms are summarized, and the scheme of video in video is implemented. Experimental result shows that the host video which is embedded numerous auxiliary information have little visually quality decline. Peak Signal to Noise Ratio (PSNR)Y of host video only degrades 0.22dB in average, while the hidden information has a high percentage of survives and keeps a high robustness in H.264/AVC compression, the average Bit Error Rate(BER) of hiding information is 0.015%.

Keywords: Information Hiding, Embed, Quantification, Extract

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
4736 The Quality of Accounting Information of Private Companies in the Czech Republic

Authors: Kateřina Struhařová

Abstract:

The paper gives the evidence of quality of accounting information of Czech private companies. In general the private companies in the Czech Republic do not see the benefits of providing accounting information of high quality. Based on the research of financial statements of entrepreneurs and companies in Zlin region it was confirmed that the quality of accounting information differs among the private entities and that the major impact on the accounting information quality has the fact if the financial statements are audited as well as the size of the entity. Also the foreign shareholders and lenders have some impact on the accounting information quality.

Keywords: Accounting information quality, Financial Statements, Czech Republic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
4735 ISCS (Information Security Check Service) for the Safety and Reliability of Communications

Authors: Jong-Whoi Shin, Jin-Tae Lee, Sang-Soo Jang, Jae-II Lee

Abstract:

Recent widespread use of information and communication technology has greatly changed information security risks that businesses and institutions encounter. Along with this situation, in order to ensure security and have confidence in electronic trading, it has become important for organizations to take competent information security measures to provide international confidence that sensitive information is secure. Against this backdrop, the approach to information security checking has come to an important issue, which is believed to be common to all countries. The purpose of this paper is to introduce the new system of information security checking program in Korea and to propose synthetic information security countermeasures under domestic circumstances in order to protect physical equipment, security management and technology, and the operation of security check for securing services on ISP(Internet Service Provider), IDC(Internet Data Center), and e-commerce(shopping malls, etc.)

Keywords: Information Security Check Service, safety criteria, object enterpriser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
4734 Detecting Fake News: A Natural Language Processing, Reinforcement Learning, and Blockchain Approach

Authors: Ashly Joseph, Jithu Paulose

Abstract:

In an era where misleading information may quickly circulate on digital news channels, it is crucial to have efficient and trustworthy methods to detect and reduce the impact of misinformation. This research proposes an innovative framework that combines Natural Language Processing (NLP), Reinforcement Learning (RL), and Blockchain technologies to precisely detect and minimize the spread of false information in news articles on social media. The framework starts by gathering a variety of news items from different social media sites and performing preprocessing on the data to ensure its quality and uniformity. NLP methods are utilized to extract complete linguistic and semantic characteristics, effectively capturing the subtleties and contextual aspects of the language used. These features are utilized as input for a RL model. This model acquires the most effective tactics for detecting and mitigating the impact of false material by modeling the intricate dynamics of user engagements and incentives on social media platforms. The integration of blockchain technology establishes a decentralized and transparent method for storing and verifying the accuracy of information. The Blockchain component guarantees the unchangeability and safety of verified news records, while encouraging user engagement for detecting and fighting false information through an incentive system based on tokens. The suggested framework seeks to provide a thorough and resilient solution to the problems presented by misinformation in social media articles.

Keywords: Natural Language Processing, Reinforcement Learning, Blockchain, fake news mitigation, misinformation detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94
4733 Evaluation Method for Information Security Levels of CIIP (Critical Information Infrastructure Protection)

Authors: Soon-Tai Park, Jong-Whoi Shin, Bog-Ki Min, Ik-Sub Lee, Gang-Shin Lee, Jae-Il Lee

Abstract:

As the information age matures, major social infrastructures such as communication, finance, military and energy, have become ever more dependent on information communication systems. And since these infrastructures are connected to the Internet, electronic intrusions such as hacking and viruses have become a new security threat. Especially, disturbance or neutralization of a major social infrastructure can result in extensive material damage and social disorder. To address this issue, many nations around the world are researching and developing various techniques and information security policies as a government-wide effort to protect their infrastructures from newly emerging threats. This paper proposes an evaluation method for information security levels of CIIP (Critical Information Infrastructure Protection), which can enhance the security level of critical information infrastructure by checking the current security status and establish security measures accordingly to protect infrastructures effectively.

Keywords: Information Security Evaluation Methodology, Critical Information Infrastructure Protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
4732 Human Detection using Projected Edge Feature

Authors: Jaedo Kim, Youngjoon Han, Hernsoo Hahn

Abstract:

The purpose of this paper is to detect human in images. This paper proposes a method for extracting human body feature descriptors consisting of projected edge component series. The feature descriptor can express appearances and shapes of human with local and global distribution of edges. Our method evaluated with a linear SVM classifier on Daimler-Chrysler pedestrian dataset, and test with various sub-region size. The result shows that the accuracy level of proposed method similar to Histogram of Oriented Gradients(HOG) feature descriptor and feature extraction process is simple and faster than existing methods.

Keywords: Human detection, Projected edge descriptor, Linear SVM, Local appearance feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
4731 The Role of Online Videos in Undergraduate Casual-Leisure Information Behaviors

Authors: Nei-Ching Yeh

Abstract:

This study describes undergraduate casual-leisure information behaviors relevant to online videos. Diaries and in-depth interviews were used to collect data. Twenty-four undergraduates participated in this study (9 men, 15 women; all were aged 18–22 years). This study presents a model of casual-leisure information behaviors and contributes new insights into user experience in casual-leisure settings, such as online video programs, with implications for other information domains.

Keywords: Casual-leisure information behaviors, information behavior, online videos, role.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
4730 SeqWord Gene Island Sniffer: a Program to Study the Lateral Genetic Exchange among Bacteria

Authors: Bezuidt O., Lima-Mendez G., Reva O. N.

Abstract:

SeqWord Gene Island Sniffer, a new program for the identification of mobile genetic elements in sequences of bacterial chromosomes is presented. This program is based on the analysis of oligonucleotide usage variations in DNA sequences. 3,518 mobile genetic elements were identified in 637 bacterial genomes and further analyzed by sequence similarity and the functionality of encoded proteins. The results of this study are stored in an open database http://anjie.bi.up.ac.za/geidb/geidbhome. php). The developed computer program and the database provide the information valuable for further investigation of the distribution of mobile genetic elements and virulence factors among bacteria. The program is available for download at www.bi.up.ac.za/SeqWord/sniffer/index.html.

Keywords: mobile genetic elements, virulence, bacterial genomes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
4729 Increase of Error Detection Effectiveness in the Data Transmission Channels with Pulse-Amplitude Modulation

Authors: Akram A. Mustafa

Abstract:

In this paper an approaches for increasing the effectiveness of error detection in computer network channels with Pulse-Amplitude Modulation (PAM) has been proposed. Proposed approaches are based on consideration of special feature of errors, which are appearances in line with PAM. The first approach consists of CRC modification specifically for line with PAM. The second approach is base of weighted checksums using. The way for checksum components coding has been developed. It has been shown that proposed checksum modification ensure superior digital data control transformation reliability for channels with PAM in compare to CRC.

Keywords: Pulse-Amplitude Modulation, checksum, transmission, discrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
4728 Evaluating the Perception of Roma in Europe through Social Network Analysis

Authors: Giulia I. Pintea

Abstract:

The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.

Keywords: Applied mathematics, oppression, Roma people, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
4727 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
4726 Groundwater Management–A Policy Perspective

Authors: M. Annie Jenifer, Carolin Arul

Abstract:

Groundwater has become the most dependable source of fresh water for agriculture, domestic and industrial uses in the past few decades. This wide use of groundwater if left uncontrolled and unseen will lead to overexploitation causing sea water intrusion in the coastal areas and illegal water marketing. Several Policies and Acts have been enacted to regulate and manage the use of this valuable resource. In spite of this the over extraction of groundwater beyond the recharging capacity of aquifers and depletion in the quality of groundwater is continuing. The current study aims at reviewing the Acts and Policies existing in the State of Tamil Nadu and in the National level regarding groundwater regulation and management. Further an analysis is made on the rights associated with the usage of groundwater resources and the gaps in these policies have been analyzed. Some suggestions are made to reform the existing groundwater policies for better management and regulation of the resource.

Keywords: Act, groundwater, policy, reform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
4725 Highly Sensitive Label Free Biosensor for Tumor Necrosis Factor

Authors: Tze Sian Pui, Tushar Bansal, Patthara Kongsuphol, Sunil K. Arya

Abstract:

We present a label-free biosensor based on electrochemical impedance spectroscopy for the detection of proinflammatory cytokine Tumor Necrosis Factor (TNF-α). Secretion of TNF-α has been correlated to the onset of various diseases including rheumatoid arthritis, Crohn-s disease etc. Gold electrodes were patterned on a silicon substrate and self assembled monolayer of dithiobis-succinimidyl propionate was used to develop the biosensor which achieved a detection limit of ~57fM. A linear relationship was also observed between increasing TNF-α concentrations and chargetransfer resistance within a dynamic range of 1pg/ml – 1ng/ml.

Keywords: Tumor necrosis factor, electrochemical impedance spectroscopy, label free, self assembled monolayer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
4724 Can Smart Meters Create Smart Behaviour?

Authors: Candice Moy, Damien Guirco, Thomas Boyle

Abstract:

Intelligent technologies are increasingly facilitating sustainable water management strategies in Australia. While this innovation can present clear cost benefits to utilities through immediate leak detection and deference of capital costs, the impact of this technology on households is less distinct. By offering real-time engagement and detailed end-use consumption breakdowns, there is significant potential for demand reduction as a behavioural response to increased information. Despite this potential, passive implementation without well-planned residential engagement strategies is likely to result in a lost opportunity. This paper begins this research process by exploring the effect of smart water meters through the lens of three behaviour change theories. The Theory of Planned Behaviour (TPB), Belief Revision theory (BR) and Practice Theory emphasise different variables that can potentially influence and predict household water engagements. In acknowledging the strengths of each theory, the nuances and complexity of household water engagement can be recognised which can contribute to effective planning for residential smart meter engagement strategies.

Keywords: Behaviour, information, household, smart meters, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
4723 A Combined Practical Approach to Condition Monitoring of Reciprocating Compressors using IAS and Dynamic Pressure

Authors: M. Elhaj, M. Almrabet, M. Rgeai, I. Ehtiwesh

Abstract:

A Comparison and evaluation of the different condition monitoring (CM) techniques was applied experimentally on RC e.g. Dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS), for the detection and diagnosis of valve faults in a two - stage reciprocating compressor for a programme of condition monitoring which can successfully detect and diagnose a fault in machine. Leakage in the valve plate was introduced experimentally into a two-stage reciprocating compressor. The effect of the faults on compressor performance was monitored and the differences with the normal, healthy performance noted as a fault signature been used for the detection and diagnosis of faults. The paper concludes with what is considered to be a unique approach to condition monitoring. First, each of the two most useful techniques is used to produce a Truth Table which details the circumstances in which each method can be used to detect and diagnose a fault. The two Truth Tables are then combined into a single Decision Table to provide a unique and reliable method of detection and diagnosis of each of the individual faults introduced into the compressor. This gives accurate diagnosis of compressor faults.

Keywords: Condition Monitoring, Dynamic Pressure, Instantaneous Angular Speed, Reciprocating Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303
4722 Detection of Salmonella in Egg Shell and Egg Content from Different Housing Systems for Laying Hens

Authors: Wiriya Loongyai, Kiettisak Promphet, Nilubol Kangsukul, Ratchawat Noppha

Abstract:

Polymerase chain reaction (PCR) assay and conventional microbiological methods were used to detect bacterial contamination of egg shells and egg content in different commercial housing systems, open house system and evaporative cooling system. A PCR assay was developed for direct detection using a set of primers specific for the invasion by A gene (invA) of Salmonella spp. PCR detected the presence of Salmonella in 2 samples of shell egg from the evaporative cooling system, while conventional cultural methods detected no Salmonella from the same samples.

Keywords: egg content, egg shell, invA gene, PCR, Salmonellaspp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3300
4721 Characterization of the In0.53Ga0.47As n+nn+ Photodetectors

Authors: Fatima Zohra Mahi, Luca Varani

Abstract:

We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detective parameter for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed by considering the free carries fluctuations. The responsivity and the detection parameter are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.

Keywords: Responsivity, detection parameter, photo-detectors, continuity equation, current noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
4720 The Method of Evaluation Artery Diameter from Ultrasound Video

Authors: U. Rubins, Z. Marcinkevics, K.Volceka

Abstract:

The cardiovascular system has become the most important subject of clinical research, particularly measurement of arterial blood flow. Therefore correct determination of arterial diameter is crucial. We propose a novel, semi-automatic method for artery lumen detection. The method is based on Gaussian probability function. Usability of our proposed method was assessed by analyzing ultrasound B-mode CFA video sequences acquired from eleven healthy volunteers. The correlation coefficient between the manual and semi-automatic measurement of arterial diameter was 0.996. Our proposed method for detecting artery boundary is novel and accurate enough for the measurement of artery diameter.

Keywords: Ultrasound, boundary detection, artery diameter, curve fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
4719 LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

Authors: Roberto Sabatini, Alessandro Gardi, Mark A. Richardson

Abstract:

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Keywords: LIDAR, Low-Level Flight, Nap-of-the-Earth Flight, Near Infra-Red, Obstacle Avoidance, Obstacle Detection, Obstacle Warning System, Sense and Avoid, Trajectory Optimisation, Unmanned Aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7085