Search results for: content accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3326

Search results for: content accuracy

2576 A User Friendly Tool for Performance Evaluation of Different Reference Evapotranspiration Methods

Authors: Vijay Shankar

Abstract:

Evapotranspiration (ET) is a major component of the hydrologic cycle and its accurate estimation is essential for hydrological studies. In past, various estimation methods have been developed for different climatological data, and the accuracy of these methods varies with climatic conditions. Reference crop evapotranspiration (ET0) is a key variable in procedures established for estimating evapotranspiration rates of agricultural crops. Values of ET0 are used with crop coefficients for many aspects of irrigation and water resources planning and management. Numerous methods are used for estimating ET0. As per internationally accepted procedures outlined in the United Nations Food and Agriculture Organization-s Irrigation and Drainage Paper No. 56(FAO-56), use of Penman-Monteith equation is recommended for computing ET0 from ground based climatological observations. In the present study, seven methods have been selected for performance evaluation. User friendly software has been developed using programming language visual basic. The visual basic has ability to create graphical environment using less coding. For given data availability the developed software estimates reference evapotranspiration for any given area and period for which data is available. The accuracy of the software has been checked by the examples given in FAO-56.The developed software is a user friendly tool for estimating ET0 under different data availability and climatic conditions.

Keywords: Crop coefficient, Crop evapotranspiration, Field moisture, Irrigation Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
2575 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
2574 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey

Authors: Rahmi Kafadar, Levent Genc

Abstract:

In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area- Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3- B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of Rural Services Directorate General. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.

Keywords: Digital Elevation Model (DEM), Geographic Information Systems (GIS), LANDSAT 8 OLI-TIRS, Land Use Land Cover (LULC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647
2573 Effects of Temperature and Enzyme Concentration on Quality of Pineapple and Pawpaw Blended Juice

Authors: Ndidi F. Amulu, Calistus N. Ude, Patrick E. Amulu, Nneka N. Uchegbu

Abstract:

The effects of temperature and enzyme concentration on the quality of mixed pineapple and pawpaw blended fruits juice were studied. Extracts of the two fruit juices were separately treated at 70  for 15 min each so as to inactivate micro-organisms. They were analyzed and blended in different proportions of 70% pawpaw and 30% pineapple, 60% pawpaw and 40% pineapple, 50% pineapple and 50% pawpaw, 40% pawpaw and 60% pineapple. The characterization of the fresh pawpaw and pineapple juice before blending showed that the juices have good quality. The high water content of the product may have affected the viscosity, vitamin C content and total soluble solid of the blended juice to be low. The effects of the process parameters on the quality showed that better quality of the blended juice can be obtained within the optimum temperature range of (50-70 °C) and enzyme concentration range (0.12-0.18 w/v). The ratio of mix 60% pineapple juice: 40% pawpaw juice has better quality. This showed that pawpaw and pineapple juices can blend effectively to produce a quality juice.

Keywords: Clarification, pawpaw, pineapple, viscosity, vitamin C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
2572 Modeling of Compaction Curves for Corn Cob Ash-Cement Stabilized Lateritic Soils

Authors: O. A. Apampa, Y. A. Jimoh, K. A. Olonade

Abstract:

The need to save time and cost of soil testing at the planning stage of road work has necessitated developing predictive models. This study proposes a model for predicting the dry density of lateritic soils stabilized with corn cob ash (CCA) and blended cement - CCA. Lateritic soil was first stabilized with CCA at 1.5, 3.0, 4.5 and 6% of the weight of soil and then stabilized with the same proportions as replacement for cement. Dry density, specific gravity, maximum degree of saturation and moisture content were determined for each stabilized soil specimen, following standard procedure. Polynomial equations containing alpha and beta parameters for CCA and blended CCA-cement were developed. Experimental values were correlated with the values predicted from the Matlab curve fitting tool, and the Solver function of Microsoft Excel 2010. The correlation coefficient (R2) of 0.86 was obtained indicating that the model could be accepted in predicting the maximum dry density of CCA stabilized soils to facilitate quick decision making in roadworks.

Keywords: Corn cob ash, lateritic soil, stabilization, maximum dry density, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
2571 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.

Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
2570 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678
2569 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: Surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
2568 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
2567 Active Segment Selection Method in EEG Classification Using Fractal Features

Authors: Samira Vafaye Eslahi

Abstract:

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
2566 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
2565 Continuous Feature Adaptation for Non-Native Speech Recognition

Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern

Abstract:

The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation.

Keywords: speaker adaptation; environment adaptation; robust speech recognition; SVD; non-native speech recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
2564 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
2563 E-Learning Recommender System Based on Collaborative Filtering and Ontology

Authors: John Tarus, Zhendong Niu, Bakhti Khadidja

Abstract:

In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.

Keywords: Collaborative filtering, e-learning, ontology, recommender system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
2562 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach

Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh

Abstract:

This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.

Keywords: River stage-discharge process, LSSVM, discrete wavelet transform (DWT), ensemble empirical decomposition mode (EEMD), multi-station modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
2561 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
2560 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognise objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor (DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network (SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modelled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study’s largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognise the postures with an accuracy of around 86.4% - only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much improved cost to performance trade-off in its approach.

Keywords: Spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
2559 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
2558 Effects of Biostimulant Application on Quali-Quantitative Characteristics of Cauliflower, Pepper and Fennel Crops under Organic and Conventional Fertilization

Authors: E. Tarantino, G. Disciglio, L. Frabboni, A. Libutti, G. Gatta, A. Gagliaridi, A. Tarantino

Abstract:

Nowadays, the main goal for modern horticultural production is an increase the quality. In recent years, the use of organic fertilizers or biostimulants that can be applied in agriculture to improve quali-quantitative crop yields has encountered increasing interest. Biostimulants are gaining importance also for their possible use in organic and sustainable agriculture, to avoid excessive fertilizer applications. Consecutive experimental trials were carried out in the Apulia region (southern Italy) on three herbaceous crops (cauliflower, pepper, fennel) grown in pots under conventional and organic fertilization systems without and with biostimulants. The aim was to determine the effects of three biostimulants (Siapton®10L, Micotech L, Lysodin Alga-Fert) on quali-quantitative yield characteristics. At harvest, the quali-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA), and when significant effects were detected, the means were compared using Tukey’s tests. These data show large differences in these yield characteristics between conventional and organic crops, particularly highlighting higher yields for the conventional crops, while variable results were generally observed when the biostimulants were applied. In this context, there were no effects of the biostimulants on the quantitative yield, whereas there were low positive effects on the qualitative characteristics, as related to higher dry matter content of cauliflower, and higher soluble solids content of pepper. Moreover, there were evident positive effects of the biostimulants with fennel, due to the lower nitrate content. These latter data are in line with most of the published literature obtained for other herbaceous crops.

Keywords: Biostimulants, cauliflower, pepper, fennel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3570
2557 An FPGA Implementation of Intelligent Visual Based Fall Detection

Authors: Peng Shen Ong, Yoong Choon Chang, Chee Pun Ooi, Ettikan K. Karuppiah, Shahirina Mohd Tahir

Abstract:

Falling has been one of the major concerns and threats to the independence of the elderly in their daily lives. With the worldwide significant growth of the aging population, it is essential to have a promising solution of fall detection which is able to operate at high accuracy in real-time and supports large scale implementation using multiple cameras. Field Programmable Gate Array (FPGA) is a highly promising tool to be used as a hardware accelerator in many emerging embedded vision based system. Thus, it is the main objective of this paper to present an FPGA-based solution of visual based fall detection to meet stringent real-time requirements with high accuracy. The hardware architecture of visual based fall detection which utilizes the pixel locality to reduce memory accesses is proposed. By exploiting the parallel and pipeline architecture of FPGA, our hardware implementation of visual based fall detection using FGPA is able to achieve a performance of 60fps for a series of video analytical functions at VGA resolutions (640x480). The results of this work show that FPGA has great potentials and impacts in enabling large scale vision system in the future healthcare industry due to its flexibility and scalability.

Keywords: Fall detection, FPGA, hardware implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
2556 Effects of Formic Acid on the Chemical State and Morphology of As-synthesized and Annealed ZnO Films

Authors: Chueh-Jung Huang, Chia-Hung Li, Hsueh-Lung Wang, Tsun-Nan Lin

Abstract:

Zinc oxide thin films with various microstructures were grown on substrates by using HCOOH-sols. The reaction mechanism of the sol system was investigated by performing an XPS analysis of as-synthesized films, due to the products of hydrolysis and condensation in the sol system contributing to the chemical state of the as-synthesized films. The chemical structures of the assynthesized films related to the microstructures of the final annealed films were also studied. The results of the Zn 2p3/2, C 1s and O1s XPS patterns indicate that the hydrolysis reaction in the sol system is strongly influenced by the HCOOH agent. The results of XRD and FE-SEM demonstrated the microstructures of the annealed films are related to the content of hydrolyzed zinc hydrate (Zn-OH) species present, and that content of the Zn-OH species in the sol system increases the HCOOH adding, and these Zn-OH species existing in the sol phase are responsible for large ZnO crystallites in the final annealed films.

Keywords: zinc oxide, hydrolysis catalyst, zinc acetate source, formic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
2555 Fabrication and Electrical Characterization of Al/BaxSr1-xTiO3/Pt/SiO2/Si Configuration for FeFET Applications

Authors: Ala'eddin A. Saif , Z. A. Z. Jamal, Z. Sauli, P. Poopalan

Abstract:

The ferroelectric behavior of barium strontium titanate (BST) in thin film form has been investigated in order to study the possibility of using BST for ferroelectric gate-field effect transistor (FeFET) for memory devices application. BST thin films have been fabricated as Al/BST/Pt/SiO2/Si-gate configuration. The variation of the dielectric constant (ε) and tan δ with frequency have been studied to ensure the dielectric quality of the material. The results show that at low frequencies, ε increases as the Ba content increases, whereas at high frequencies, it shows the opposite variation, which is attributed to the dipole dynamics. tan δ shows low values with a peak at the mid-frequency range. The ferroelectric behavior of the Al/BST/Pt/SiO2/Si has been investigated using C-V characteristics. The results show that the strength of the ferroelectric hysteresis loop increases as the Ba content increases; this is attributed to the grain size and dipole dynamics effect.

Keywords: BST thin film, Electrical properties, Ferroelectrichysteresis, Ferroelectric FET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
2554 The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes

Authors: Adilah Shariff, Nur Syairah Mohamad Aziz, Norsyahidah Md Saleh, Nur Syuhada Izzati Ruzali

Abstract:

The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.

Keywords: Biochar, biomass, coconut wastes, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
2553 The Effect of Interlamellar Distance in Pearlite on CGI Machining

Authors: Anders Berglund, Cornel Mihai Nicolescu, Henrik Svensson

Abstract:

Swedish truck industry is investigating the possibility for implementing the use of Compacted Graphite Iron (CGI) in their heavy duty diesel engines. Compared to the alloyed gray iron used today, CGI has superior mechanical properties but not as good machinability. Another issue that needs to be addressed when implementing CGI is the inhomogeneous microstructure when the cast component has different section thicknesses, as in cylinder blocks. Thinner sections results in finer pearlite, in the material, with higher strength. Therefore an investigation on its influence on machinability was needed. This paper focuses on the effect that interlamellar distance in pearlite has on CGI machinability and material physical properties. The effect of pearlite content and nodularity is also examined. The results showed that interlamellar distance in pearlite did not have as large effect on the material physical properties or machinability as pearlite content. The paper also shows the difficulties of obtaining a homogeneous microstructure in inhomogeneous workpieces.

Keywords: Compacted graphite iron (CGI), machinability, microstructure, milling, interlamellar distance in pearlite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
2552 Phytochemical Profiles and Antioxidant Activity of Selected Indigenous Vegetables in Northern Mindanao, Philippines

Authors: Renee P. Baang, Romeo M. Del Rosario, Nenita D. Palmes

Abstract:

The crude methanol extracts of five indigenous vegetables namely, Amarathus tricolor, Basella rubra L., Chochurus olitorius L., Ipomea batatas, and Momordica chuchinensis L., were examined for their phytochemical profile and antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. The values for DPPH radical scavenging activity ranged from 7.6-89.53% with B. rubra and I. batatas having the lowest and highest values, respectively. The total flavonoid content of all five indigenous vegetables ranged from 74.65-277.3 mg quercetin equivalent per gram of dried vegetable material while the total phenolic content ranged from 1.93-6.15 mg gallic acid equivalent per gram dried material. Phytochemical screening revealed the presence of steroids, flavonoids, saponins, tannins, carbohydrates and reducing sugars, which may also be associated with the antioxidant activity shown by these indigenous vegetables.

Keywords: Antioxidant, DPPH radical scavenging activity, Philippine indigenous vegetables, phytochemical screening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4788
2551 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil

Abstract:

This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing. 

Keywords: Soft soil stabilisation, waste materials, fineness, and unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
2550 Emotional Analysis for Text Search Queries on Internet

Authors: Gemma García López

Abstract:

The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.

Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
2549 An Investigation on the Accuracy of Nonlinear Static Procedures for Seismic Evaluation of Buckling-restrained Braced Frames

Authors: An Hong Nguyen, Chatpan Chintanapakdee, Toshiro Hayashikawa

Abstract:

Presented herein is an assessment of current nonlinear static procedures (NSPs) for seismic evaluation of bucklingrestrained braced frames (BRBFs) which have become a favorable lateral-force resisting system for earthquake resistant buildings. The bias and accuracy of modal, improved modal pushover analysis (MPA, IMPA) and mass proportional pushover (MPP) procedures are comparatively investigated when they are applied to BRBF buildings subjected to two sets of strong ground motions. The assessment is based on a comparison of seismic displacement demands such as target roof displacements, peak floor/roof displacements and inter-story drifts. The NSP estimates are compared to 'exact' results from nonlinear response history analysis (NLRHA). The response statistics presented show that the MPP procedure tends to significantly overestimate seismic demands of lower stories of tall buildings considered in this study while MPA and IMPA procedures provide reasonably accurate results in estimating maximum inter-story drift over all stories of studied BRBF systems.

Keywords: Buckling-restrained braced frames, nonlinearresponse history analysis, nonlinear static procedure, seismicdemands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
2548 Performance Analysis of a Flexible Manufacturing Line Operated Under Surplus-based Production Control

Authors: K. K. Starkov, A. Y. Pogromsky, I. J. B. F. Adan, J. E. Rooda

Abstract:

In this paper we present our results on the performance analysis of a multi-product manufacturing line. We study the influence of external perturbations, intermediate buffer content and the number of manufacturing stages on the production tracking error of each machine in the multi-product line operated under a surplusbased production control policy. Starting by the analysis of a single machine with multiple production stages (one for each product type), we provide bounds on the production error of each stage. Then, we extend our analysis to a line of multi-stage machines, where similarly, bounds on each production tracking error for each product type, as well as buffer content are obtained. Details on performance of the closed-loop flow line model are illustrated in numerical simulations.

Keywords: Flexible manufacturing systems, tracking systems, discrete time systems, production control, boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
2547 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467