Search results for: Relevance Vector Regression.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1584

Search results for: Relevance Vector Regression.

834 Trade Policy and Economic Growth of Turkey in Global Economy: New Empirical Evidences

Authors: Pınar Yardımcı

Abstract:

This paper tries to answer to the questions whether or not trade openness causes economic growth and trade policy changes are good for Turkey as a developing country in global economy before and after 1980. We employ Johansen co-integration and Granger causality tests with error correction modeling based on vector autoregressive. Using WDI data from the pre-1980 and the post-1980, we find that trade openness and economic growth are cointegrated in the second term only. Also the results suggest a lack of long-run causality between our two variables. These findings may imply that trade policy of Turkey should concentrate more on extra complementary economic reforms.

Keywords: Globalization, Trade Policy, Economic Growth, Openness, Co-integration, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
833 Potentials of Raphia hookeri Wine in Livelihood Sustenance among Rural and Urban Populations in Nigeria

Authors: A. A. Aiyeloja, A.T. Oladele, O. Tumulo

Abstract:

Raphia wine is an important forest product with cultural significance besides its use as medicine and food in southern Nigeria. This work aims to evaluate the profitability of Raphia wine production and marketing in Sapele Local Government Area, Nigeria. Four communities (Sapele, Ogiede, Okuoke and Elume) were randomly selected for data collection via questionnaires among producers and marketers. A total of 50 producers and 34 marketers were randomly selected for interview. Data was analyzed using descriptive statistics, profit margin, multiple regression and rate of returns on investment (RORI). Annual average profit was highest in Okuoke (Producers – N90, 000.00, Marketers - N70, 000.00) and least in Sapele (Producers N50, 000.00, Marketers – N45, 000.00). Calculated RORI for marketers were Elume (40.0%), Okuoke (25.0%), Ogiede (33.3%) and Sapele (50.0%). Regression results showed that location has significant effects (0.000, ρ ≤ 0.05) on profit margins. Male (58.8%) and female (41.2%) invest in Raphia wine marketing, while males (100.0%) dominate production. Results showed that Raphia wine has potentials to generate household income, enhance food security and improve quality of life in rural, semi-urban and urban communities. Improved marketing channels, storage facilities and credit facilities via cooperative groups are recommended for producers and marketers by concerned agencies.

Keywords: Raphia wine, Profit margin, RORI, Livelihood, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
832 Factors Influencing Environmental Management Practices Among Hotels in Malaysia

Authors: Zaiton Samdin, Kasimu Abdu Bakori, Hamimah Hassan

Abstract:

This paper attempts to investigate the factors that influence hotel managers- attitudes towards sustainable tourism practices (STP) in Kuala Lumpur and the state of Selangor in Malaysia. The study distributes 104 questionnaires to hotels ranging from one star to five-star categories including budget hotels. Out of this figure, 60 copies of the questionnaires were returned and analyzed. The finding revealed that of all the seven factors investigated, only the variables measuring incentives and knowledge have significantly influenced sustainable tourism practices in the country. Therefore, government and other green bodies within the country should continue to provide hotels with incentives for sound technologies. Moreover, the government agencies should continue to educate hoteliers on the relevance of environmental protection for the successful implementation of sustainable tourism practices.

Keywords: Attitude, incentive, knowledge, sustainable tourism practices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4108
831 A Coherent Relationship between EconomicGrowth and Unemployment: An Empirical Evidence from Pakistan

Authors: T. Hussain, M. W. Siddiqi, A. Iqbal

Abstract:

The study is aimed to test causal relationship between growth and unemployment, using time series data for Pakistan from 1972 to 2006. Growth is considered to be a pathway to decrease the level of unemployment. Unemployment is a social and political issue. It is a phenomenon where human resources are wasted leading to deacceleration in growth. Johanson Cointegration shows that there is long run relationship between growth and unemployment. For short run dynamics and causality, the study utilizes Vector Error Correction Model (VECM). The results of VECM indicate that there is short and long run causal relation between growth and unemployment including capital, labor and human capital as explanatory variables.

Keywords: Economic Growth, Unemployment, Cointegrationand Causality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3178
830 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto

Abstract:

Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.

Keywords: Stress, functional near-infrared spectroscopy, frontal lobe, state-trait anxiety inventory score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
829 A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement

Authors: Sijie Fu, Pascal-Henry Biwolé, Christian Mathis

Abstract:

Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration.

Keywords: PIV, PTV, airflow measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4308
828 SVPWM Based Two Level VSI for Micro Grids

Authors: P. V. V. Rama Rao, M. V. Srikanth, S. Dileep Kumar Varma

Abstract:

With advances in solid-state power electronic devices and microprocessors, various pulse-width-modulation (PWM) techniques have been developed for industrial applications. This paper presents the comparison of two different PWM techniques, the sinusoidal PWM (SPWM) technique and the space-vector PWM (SVPWM) technique applied to two level VSI for micro grid applications. These two methods are compared by discussing their ease of implementation and by analyzing the output harmonic spectra of various output voltages (line-to-neutral voltages, and line-to-line voltages) and their total harmonic distortion (THD). The SVPWM technique in the under-modulation region can increase the fundamental output voltage by 15.5% over the SPWM technique.

Keywords: SPWM, SVPWM, VSI, Modulation Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
827 Development of a Speed Sensorless IM Drives

Authors: Dj. Cherifi, Y. Miloud, A. Tahri

Abstract:

The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases.

The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque.

Keywords: Induction Motor Drive, field-oriented control, adaptive speed observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
826 Teaching Light Polarization by Putting Art and Physics Together

Authors: Fabrizio Logiurato

Abstract:

Light Polarization has many technological applications, and its discovery was crucial to reveal the transverse nature of the electromagnetic waves. However, despite its fundamental and practical importance, in high school, this property of light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to perform many brilliant experiments with low cost materials. Moreover, the treatment of this matter lends very well to an interdisciplinary approach between art, biology and technology, which usually makes things more interesting to students. For these reasons, we have developed, and in this work, we introduce a laboratory on light polarization for high school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing filters. Pupils are very fascinated and drawn into by what they observe. The colourful images remind them of those ones of abstract painting or alien landscapes. With this multidisciplinary teaching method, students are more engaged and participative, and also, the learning process of the respective physics concepts is more effective.

Keywords: Light polarization, optical activity, multidisciplinary education, science and art.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
825 New Multipath Node-Disjoint Routing Based on AODV Protocol

Authors: V. Zangeneh, S. Mohammadi

Abstract:

Today, node-disjoint routing becomes inessential technique in communication of packets among various nodes in networks. Meanwhile AODV (Ad Hoc On-demand Multipath Distance Vector) creates single-path route between a pair of source and destination nodes. Some researches has done so far to make multipath node-disjoint routing based on AODV protocol. But however their overhead and end-to-end delay are relatively high, while the detail of their code is not available too. This paper proposes a new approach of multipath node-disjoint routing based on AODV protocol. Then the algorithm of analytical model is presented. The extensive results of this algorithm will be presented in the next paper.

Keywords: AODV; MANET; Multipath Routing; Node-disjoint;transmission delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3076
824 Opportunities and Options for Government to Promote Corporate Social Responsibility in the Czech Republic

Authors: Pavel Adámek

Abstract:

The concept of corporate social responsibility (CSR) in the Czech Republic has evolved notably during the last few years and an issue that started as an interest- and motive-based activity for businesses is becoming more commonplace. Governments have a role to play in ensuring that corporations behave according to the rules and norms of society and can legislate, foster, collaborate with businesses and endorse good practice in order to facilitate the development of CSR. The purpose of this paper is to examine the opportunities and options of CSR in government policy and research its relevance to a business sector. An increasing number of companies is engaging in responsible activities, the public awareness of CSR is rising, and customers are giving higher importance to CSR of companies in their choice. By drawing on existing CSR approach in Czech and understanding of CSR are demonstrated. The paper provides an overview, more detailed government approach of CSR.

Keywords: Approach, corporate social responsibility, government policy, instruments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
823 Using Dempster-Shafer Theory in XML Information Retrieval

Authors: F. Raja, M. Rahgozar, F. Oroumchian

Abstract:

XML is a markup language which is becoming the standard format for information representation and data exchange. A major purpose of XML is the explicit representation of the logical structure of a document. Much research has been performed to exploit logical structure of documents in information retrieval in order to precisely extract user information need from large collections of XML documents. In this paper, we describe an XML information retrieval weighting scheme that tries to find the most relevant elements in XML documents in response to a user query. We present this weighting model for information retrieval systems that utilize plausible inferences to infer the relevance of elements in XML documents. We also add to this model the Dempster-Shafer theory of evidence to express the uncertainty in plausible inferences and Dempster-Shafer rule of combination to combine evidences derived from different inferences.

Keywords: Dempster-Shafer theory, plausible inferences, XMLinformation retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
822 Design of Multiplier-free State-Space Digital Filters

Authors: Tamal Bose, Zhurun Zhang, Miloje Radenkovic, Ojas Chauhan

Abstract:

In this paper, a novel approach is presented for designing multiplier-free state-space digital filters. The multiplier-free design is obtained by finding power-of-2 coefficients and also quantizing the state variables to power-of-2 numbers. Expressions for the noise variance are derived for the quantized state vector and the output of the filter. A “structuretransformation matrix" is incorporated in these expressions. It is shown that quantization effects can be minimized by properly designing the structure-transformation matrix. Simulation results are very promising and illustrate the design algorithm.

Keywords: Digital filters, minimum noise, multiplier-free, quantization, state-space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
821 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: Emotion recognition, facial recognition, signal processing, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
820 An Estimation of the Performance of HRLS Algorithm

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

The householder RLS (HRLS) algorithm is an O(N2) algorithm which recursively updates an arbitrary square-root of the input data correlation matrix and naturally provides the LS weight vector. A data dependent householder matrix is applied for such an update. In this paper a recursive estimate of the eigenvalue spread and misalignment of the algorithm is presented at a very low computational cost. Misalignment is found to be highly sensitive to the eigenvalue spread of input signals, output noise of the system and exponential window. Simulation results show noticeable degradation in the misalignment by increase in eigenvalue spread as well as system-s output noise, while exponential window was kept constant.

Keywords: HRLS algorithm, eigenvalue spread, misalignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
819 File Format of Flow Chart Simulation Software - CFlow

Authors: Syahanim Mohd Salleh, Zaihosnita Hood, Hairulliza Mohd Judi, Marini Abu Bakar

Abstract:

CFlow is a flow chart software, it contains facilities to draw and evaluate a flow chart. A flow chart evaluation applies a simulation method to enable presentation of work flow in a flow chart solution. Flow chart simulation of CFlow is executed by manipulating the CFlow data file which is saved in a graphical vector format. These text-based data are organised by using a data classification technic based on a Library classification-scheme. This paper describes the file format for flow chart simulation software of CFlow.

Keywords: CFlow, flow chart, file format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
818 Drop Impact on a Vibrated, Heated Surface: Towards a Potential New Way of Elaborating Nuclear Fuel from Gel Microspheres

Authors: Méryl Brothier, Dominique Moulinier, Christophe Bertaux

Abstract:

The gel-supported precipitation (GSP) process can be used to make spherical particles (spherules) of nuclear fuel, particularly for very high temperature reactors (VHTR) and even for implementing the process called SPHEREPAC. In these different cases, the main characteristics are the sphericity of the particles to be manufactured and the control over their grain size. Nonetheless, depending on the specifications defined for these spherical particles, the GSP process has intrinsic limits, particularly when fabricating very small particles. This paper describes the use of secondary fragmentation (water, water/PVA and uranyl nitrate) on solid surfaces under varying temperature and vibration conditions to assess the relevance of using this new technique to manufacture very small spherical particles by means of a modified GSP process. The fragmentation mechanisms are monitored and analysed, before the trends for its subsequent optimised application are described.

Keywords: Microsphere elaboration, nuclear fuel, droplet impact , gel-supported precipitation process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
817 Group Invariant Solutions for Radial Jet Having Finite Fluid Velocity at Orifice

Authors: I. Naeem, R. Naz

Abstract:

The group invariant solution for Prandtl-s boundary layer equations for an incompressible fluid governing the flow in radial free, wall and liquid jets having finite fluid velocity at the orifice are investigated. For each jet a symmetry is associated with the conserved vector that was used to derive the conserved quantity for the jet elsewhere. This symmetry is then used to construct the group invariant solution for the third-order partial differential equation for the stream function. The general form of the group invariant solution for radial jet flows is derived. The general form of group invariant solution and the general form of the similarity solution which was obtained elsewhere are the same.

Keywords: Two-dimensional jets, radial jets, group invariant solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
816 Active Disturbance Rejection Control for Wind System Based On a DFIG

Authors: R. Chakib, A. Essadki, M. Cherkaoui

Abstract:

This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.

Keywords: Doubly fed induction generator DFIG, Active disturbance rejection control ADRC, Vector control, MPPT, Extended state observer, back to back converter, Wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513
815 Two Class Motor Imagery Classification via Wave Atom Sub-Bants

Authors: Nebi Gedik

Abstract:

The goal of motor image brain computer interface research is to create a link between the central nervous system and a computer or device. The most important signal for brain-computer interface is the electroencephalogram. The aim of this research is to explore a set of effective features from EEG signals, separated into frequency bands, using wave atom sub-bands to discriminate right and left-hand motor imagery signals. Over the transform coefficients, feature vectors are constructed for each frequency range and each transform sub-band, and their classification performances are tested. The method is validated using EEG signals from the BCI competition III dataset IIIa and classifiers such as support vector machine and k-nearest neighbors.

Keywords: motor imagery, EEG, Wave atom transform sub-bands, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
814 Protein-Protein Interaction Detection Based on Substring Sensitivity Measure

Authors: Nazar Zaki, Safaai Deris, Hany Alashwal

Abstract:

Detecting protein-protein interactions is a central problem in computational biology and aberrant such interactions may have implicated in a number of neurological disorders. As a result, the prediction of protein-protein interactions has recently received considerable attention from biologist around the globe. Computational tools that are capable of effectively identifying protein-protein interactions are much needed. In this paper, we propose a method to detect protein-protein interaction based on substring similarity measure. Two protein sequences may interact by the mean of the similarities of the substrings they contain. When applied on the currently available protein-protein interaction data for the yeast Saccharomyces cerevisiae, the proposed method delivered reasonable improvement over the existing ones.

Keywords: Protein-Protein Interaction, support vector machine, feature extraction, pairwise alignment, Smith-Waterman score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
813 Foreign Direct Investment on Economic Growth by Industries in Central and Eastern European Countries

Authors: Shorena Pharjiani

Abstract:

Present empirical paper investigates the relationship between FDI and economic growth by 10 selected industries in 10 Central and Eastern European countries from the period 1995 to 2012. Different estimation approaches were used to explore the connection between FDI and economic growth, for example OLS, RE, FE with and without time dummies. Obtained empirical results leads to some main consequences: First, the Central and East European countries (CEEC) attracted foreign direct investment, which raised the productivity of industries they entered in. It should be concluded that the linkage between FDI and output growth by industries is positive and significant enough to suggest that foreign firm’s participation enhanced the productivity of the industries they occupied. There had been an endogeneity problem in the regression and fixed effects estimation approach was used which partially corrected the regression analysis in order to make the results less biased. Second, it should be stressed that the results show that time has an important role in making FDI operational for enhancing output growth by industries via total factor productivity. Third, R&D positively affected economic growth and at the same time, it should take some time for research and development to influence economic growth. Fourth, the general trends masked crucial differences at the country level: over the last 20 years, the analysis of the tables and figures at the country level show that the main recipients of FDI of the 11 Central and Eastern European countries were Hungary, Poland and the Czech Republic. The main reason was that these countries had more open door policies for attracting the FDI. Fifth, according to the graphical analysis, while Hungary had the highest FDI inflow in this region, it was not reflected in the GDP growth as much as in other Central and Eastern European countries.

Keywords: Central and East European countries (CEEC), economic growth, FDI, panel data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
812 Sparsity-Aware and Noise-Robust Subband Adaptive Filter

Authors: Young-Seok Choi

Abstract:

This paper presents a subband adaptive filter (SAF) for a system identification where an impulse response is sparse and disturbed with an impulsive noise. Benefiting from the uses of l1-norm optimization and l0-norm penalty of the weight vector in the cost function, the proposed l0-norm sign SAF (l0-SSAF) achieves both robustness against impulsive noise and much improved convergence behavior than the classical adaptive filters. Simulation results in the system identification scenario confirm that the proposed l0-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system identification in the presence of impulsive noise.

Keywords: Subband adaptive filter, l0-norm, sparse system, robustness, impulsive interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
811 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409
810 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
809 Image Authenticity and Perceptual Optimization via Genetic Algorithm and a Dependence Neighborhood

Authors: Imran Usman, Asifullah Khan, Rafiullah Chamlawi, Abdul Majid

Abstract:

Information hiding for authenticating and verifying the content integrity of the multimedia has been exploited extensively in the last decade. We propose the idea of using genetic algorithm and non-deterministic dependence by involving the un-watermarkable coefficients for digital image authentication. Genetic algorithm is used to intelligently select coefficients for watermarking in a DCT based image authentication scheme, which implicitly watermark all the un-watermarkable coefficients also, in order to thwart different attacks. Experimental results show that such intelligent selection results in improvement of imperceptibility of the watermarked image, and implicit watermarking of all the coefficients improves security against attacks such as cover-up, vector quantization and transplantation.

Keywords: Digital watermarking, fragile watermarking, geneticalgorithm, Image authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
808 Balanced and Unbalanced Voltage Sag Mitigation Using DSTATCOM with Linear and Nonlinear Loads

Authors: H. Nasiraghdam, A. Jalilian

Abstract:

DSTATCOM is one of the equipments for voltage sag mitigation in power systems. In this paper a new control method for balanced and unbalanced voltage sag mitigation using DSTATCOM is proposed. The control system has two loops in order to regulate compensator current and load voltage. Delayed signal cancellation has been used for sequence separation. The compensator should protect sensitive loads against different types of voltage sag. Performance of the proposed method is investigated under different types of voltage sags for linear and nonlinear loads. Simulation results show appropriate operation of the proposed control system.

Keywords: Custom power, power quality, voltage sagmitigation, current vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
807 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces

Authors: Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.

Keywords: Conservation laws, diffusion equations, Cahn-Hilliard Equations, evolving surfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
806 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2602
805 Performance Evaluation of Routing Protocols for High Density Ad Hoc Networks Based on Energy Consumption by GlomoSim Simulator

Authors: E. Ahvar, M. Fathy

Abstract:

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1).Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Keywords: Ad hoc Network, energy consumption, Glomosim, routing protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136