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Abstract—The householder RLS (HRLS) algorithm is an O(N2)
algorithm which recursively updates an arbitrary square-root of the
input data correlation matrix and naturally provides the LS weight
vector. A data dependent householder matrix is applied for such
an update. In this paper a recursive estimate of the eigenvalue
spread and misalignment of the algorithm is presented at a very low
computational cost. Misalignment is found to be highly sensitive to
the eigenvalue spread of input signals, output noise of the system and
exponential window. Simulation results show noticeable degradation
in the misalignment by increase in eigenvalue spread as well as
system’s output noise, while exponential window was kept constant.

Keywords—HRLS algorithm, eigenvalue spread, misalignment.

I. INTRODUCTION

ADAPTIVE filtering is a modeling procedure in signal

processing which allows for the adaptation of model

parameters with respect to incoming input signals. For adaptive

transversal filters, it is a standard procedure to formulate

the problem using the method of least squares, extended for

recursive solution update. Recursive least squares (RLS) based

methods offer good numerical stability and are closely related

to algorithms for Kalman filtering problems [1]. The HRLS

algorithm is related to Potter’s square-root covariance filter,

which was the first square-root Kalman filter implementation,

developed in the early 1960s [2]. The performance of the

algorithm depends on the orthogonalization capabilities of the

householder transformation used to process the input for the

next update. Fast convergence rate of HRLS algorithm make it

numerically robust[3], but its misalignment is greatly affected

by the eigenvalue spread of the input signals and system output

noise.

The rate of convergence , misalignment and numerical

stability of the algorithms depend on the condition number of

the input signal covariance matrix [4]. The eigenvalue spread

of the covariance matrix is a measure of the condition number

[5], [6], and this spread controls the convergence rate of the

LMS based algorithms[7].

In this paper we examine the performance of the HRLS al-

gorithm by recursively estimating the input eigenvalue spread

and misalignment at a low computational cost. Although

rate of convergence of HRLS algorithm is invariant to the

eigenvalue spread of the correlation matrix, its misalignment

is highly sensitive to this spread. Affect of the output signal

noise on misalignment as well as convergence rate is also

observed. Simulations are presented to show the affect of
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spectral condition number and output noise (SNR) on the

misalignment as well as mean square error of the algorithm.

II. THE HRLS ALGORITHM

In this section we briefly derive the HRLS algorithm for

adaptive least squares problem of the form:

min
w∈RN

Jn(wn) =
n∑

i=0

λn−i(wT
n ai − s(i))2 (1)

where s(i) ∈ R is the reference signal, and y(i) = wT
n ai is

the prediction of s(i) for 1 ≤ i ≤ n, while n is the current

time value.

For a transversal finite impulse response (FIR) adaptive

filter, vectors ai ∈ RN are formed by the input u(i) , such

that

ai = [ u(i) u(i− 1) . . . u(i−N + 1) ]T

and vector wn ∈ RN is an estimate of the filter tap vector,

which is updated by minimizing the sum of squared error cost

function Jn(wn) . The constant λ ∈ [0, 1] is known as the

forgetting factor.

Define the n×N data matrix An by

⎛
⎜⎜⎜⎜⎜⎝

u(1) 0 . . . 0
u(2) u(1) . . . 0

...
...

. . .
...

u(n− 1) u(n− 2) . . . u(n−N)
u(n) u(n− 1) . . . u(n−N + 1)

⎞
⎟⎟⎟⎟⎟⎠

and the diagonal matrix Λn by

Λn = diag[
√
λn−1,

√
λn−2, . . . ,

√
λ, 1]

The above definitions allow us to write the minimization

problem in (1) as

Jn(wn) = ‖Λndn − ΛnAnwn‖22 (2)

where

dn = [ s(1) s(2) . . . s(n) ]T + η

η is the white Gaussian noise of the system output. If Rn

denotes the correlation matrix of input data An, then following

relation holds for the square-root factor Sn of Rn ,

Rn = ST
n Sn

Let us define N ×1 vector xn by considering new data vector

an and the square-root factor of the previous instant as:
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xn =
ST
n−1an√

λ

We are now in a position to consider the (N + 1) × (N +
1) orthogonal matrix Pn, presented in [2], to formulate the

equation for updating S−T
n−1 to S−T

n . i.e.,

Pn

(
xn λ− 1

2S−T
n−1

1 0T

)
=

(
0 S−T

n

δn uT
n

)
(3)

where δn =
√
1+ ‖ xn ‖2 =

√
λ+ aTnR

−1
n−1an√

λ
.

The orthogonal matrix Pn , used to annihilate the vector xn

in (3), is a Householder matrix [2]. Here,

un =
R−1

n−1an

λδn

is a scaled version of the Kalman gain vector [8], which can

be used to update the filter tap-weight vector.

Householder RLS(HRLS) algorithm can be deduced by

computing the a priori error e(n), and then updating the filter

tap-weight wn by [2],

e(n) = (s(n) + η(n))− wT
n−1an (4)

wn = wn−1 − e(n)

δn
un

III. RECURSIVE ESTIMATION OF THE PERFORMANCE

A. Eigenvalue Spread of Input data

The eigenvalue spread of the data matrix Rn is the ratio

of the maximum eigenvalue of Rn to its minimum eigenvalue

[6].i.e.,

ξn =
λmax(Rn)

λmin(Rn)

The eigenvalue spread is a measure of the condition number of

the covariance matrix Rn. When this spread is increased, Rn

becomes contaminated and its condition number is increased.

The eigenvalue spread of the correlation matrix of the input

vector plays a fundamental role in limiting the convergence

performance of the LMS based algorithms. In case of HRLS

algorithm, although its rate of convergence is invariant to the

eigenvalue spread, its misalignment is found to suffer terribly

from it.

B. Recursive Computation of Misalignment

We define the misalignment vector at time n as :

mn = w̃ − wn

where w̃ is the true impulse response of the system. Rewriting

HRLS algorithm in terms of misalignment gives:

mn = mn−1 − e(n)

δn
un (5)

Taking the l2 norm and mathematical expectation on both sides

of (4), we obtain

E{‖mn‖22} = E{‖mn−1‖22} − E{‖e(n)
δn

un‖22}

Here we have assumed that E{‖e(n)
δn

unmn−1‖22} = 0. Ac-

cording to [3] , the second term on the right hand side of the

last equation is positive, so we have:

E{‖mn‖22} − E{‖mn−1‖22} ≤ 0

This shows that the length of the misalignment vector is

nonincreasing.

Now rewriting equation (4) in terms of misalignment , we

have

e(n) = mT
n−1an + η(n)

If an are independent, then lim
n→∞E{e(n)2} = 0 , which im-

plies that

lim
n→∞E{‖mn‖22} = 0

C. Eigenvalue Spread and Misalignment

Misalignment of the RLS algorithm is found to depend

on three terms: the exponential window, the level of system

output noise and the condition number in [4]. The ‖.‖E norm

was used for the computation of the condition number. We

notice the same behavior of the misalignment of the HRLS

algorithm. A high level of system output noise, high condition

number and exponential window far from one, degrade the

misalignment of the HRLS algorithm.

In this paper, we consider the behavior of misalignment

subject to the changes in the eigenvalue spread, output noise of

the system and exponential window. To ease the computations

we are considering the eigenvalue spread in place of the

condition number with ‖.‖E norm. Our simulation results

show that with a fixed exponential window misalignment is

highly sensitive to the system output noise as well as the

eigenvalue spread of the input correlation matrix Rn.

IV. SIMULATION RESULTS

Computer simulation consists of estimating an unknown

finite impulse response w̃ of length N . The adaptive filter

is assumed to have the same number of taps. The input signal

u(n) is obtained by filtering a white, zero mean, Gaussian

random sequence through the model [7],

H(z) =

√
1− α2

1− αz−1

where |α| < 1 is the input signal to noise ratio.

The parameter α controls the eigenvalue spread of the input

autocorrelation matrix. α = 0 gives uncorrelated sequence

(white) with eigenvalue spread ≈ 1. The eigenvalue spread

increases as α moves away from 0. Figure1 shows the results

of the eigenvalue spread of input correlation matrix for three

different values: α = 0, 0.5, and 0.9. Significant increase in

the eigenvalue spread is observed for α close to 1. During
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Fig. 1. Spectral Condition Number of Input correlation matrix for α =
0.0, 0.5, 0.9
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Fig. 2. Misalignment of HRLS algorithm for α = 0.0.

this process we have fixed output noise η at -30 dB, and

exponential window at 1− 1
5N .

Misalignment of the HRLS algorithm is computed recur-

sively to estimate the behavior of the algorithm. Keeping expo-

nential window fixed at 1− 1
5N , we compute the misalignment

in dB, and notice that when eigenvalue spread close to 1, the

misalignment is approximately equal to the output signal noise

η in dB.

• Figure 2 shows the degradation of misalignment with the

increase in the eigenvalue spread, with fixed output noise.

For α close to 0, misalignment is close to -30 dB, and

for α = 0.9, it is degraded to −27.

• Figure 3 shows the degradation of misalignment with

the increase in the output signal noise of the system

for eigenvalue spread close to 1, i.e. for α = 0. Here

misalignment is close to the corresponding signal to noise

ratio η of output.

So far the convergence rate of the HRLS algorithm is

concerned, it is invariant to the eigenvalue spread of the input

data, but is affected by the output noise η. Figure 4 shows the

delay in convergence with the increase in the out put noise. A

steady state solution is achieved faster with smaller value of

η.

V. CONCLUSION

Performance of the numerically robust HRLS algorithm is

estimated recursively at a low computational cost, with respect
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Fig. 3. Misalignment of HRLS algorithm for η = −30dB.
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Fig. 4. Mean square error of HRLS algorithm for η =
−30dB,−40dB,−50dB.

to the eigenvalue spread of the input covariance matrix. Inspite

of fast convergence, misalignment of the algorithm is found

to be affected by the systems output as well as input noise.

Recursive estimate of misalignment is computed and is shown

to be affected by the changes in the eigenvalue spread.
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