Active Disturbance Rejection Control for Wind System Based On a DFIG
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Active Disturbance Rejection Control for Wind System Based On a DFIG

Authors: R. Chakib, A. Essadki, M. Cherkaoui

Abstract:

This paper proposes the study of a robust control of the doubly fed induction generator (DFIG) used in a wind energy production. The proposed control is based on the linear active disturbance rejection control (ADRC) and it is applied to the control currents rotor of the DFIG, the DC bus voltage and active and reactive power exchanged between the DFIG and the network. The system under study and the proposed control are simulated using MATLAB/SIMULINK.

Keywords: Doubly fed induction generator DFIG, Active disturbance rejection control ADRC, Vector control, MPPT, Extended state observer, back to back converter, Wind turbine.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096099

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511

References:


[1] Fredo, B., Marco, L. and Ke, M. Power Electronics Converters for Wind turbine Systems, IEEE Transaction on industry applications, vol. 48, No. 2, March/April 2012.
[2] Tapia, A., Tapia, G., Ostolaza, J.X. and Saenz, J.R. Modeling and control of a wind turbine driven doubly fed induction generator, IEEE Transactions on Energy conversion, vol. 18, No. 2, June 2003.
[3] Han, Jingqing. From PID to Active disturbance rejection Control, IEEE Transaction on industrial electronics, vol.56, No.3, March 2009.
[4] Xu, L. and Cartwright, P. Direct active and reactive power control of DFIG for wind energy generation, IEEE Transactions on Energy conversion, vol. 21, No. 2, Sept 2006.
[5] Gernot, H. A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practioners, Electronics 2013,2,246- 279;doi:10.3390/electronics2030246.
[6] Pablo, L. and Julio, U. Doubly Fed Induction Generator Model for transient Stability Analysis, IEEE Transaction on energy conversion, vol. 20, No. 2, June 2005.
[7] Betran, B., Ahmed-ali, T., and Benbouzid, M.E.H, Sliding Mode Power Control of Variable Speed Wind Energy Conversion systems, IEEE Transaction on energy conversion, vol. 23, No. 2, June 2008.
[8] Oscar, B. Sliding Mode Control strategy for Wind Turbine Power Maximization, Energies 2012, 5, 2310-2330; doi:10..3390/en5072310.
[9] Muller, S., Diecke, M., and Doncher, R.W, Doubly Fed Induction Generator Systems for Wind Turbines, IEEE Industry Applications Magazine, vol. 8, Issue 3, May/June 2002.
[10] Zheng, O., On Active Disturbance Rejection Control: Stability analysis and Applications in Disturbance Decoupling Control, Ph.D. Dissertation, Dept of Elect. Comp. Eng., Cleveland State University, Cleveland, USA, July 2009.
[11] Zheng, Q. and Gao, Z. On Practical Applications of Active Disturbance rejection Control, Proceeding of the 29th chinese conference, July 29- 31, 2010, Beijing, China.
[12] Wankun, Z., Shao, S. and Gao, Z., A Stability Study of the active disturbance rejection Control Problem by a Singular Perturbation approach, Applied Mathematical sciences, vol. 3, No. 10, 491-508.
[13] Jingqing, H., Auto-Disturbance Rejection Control and its Applications, Control decision, vol. 13, No. 1, 1998, pp. 19-23.
[14] GHENNAM, T., 2011, Supervision d’une ferme éolienne pour son integration dans la gestion d’un réseau électrique, Apport des convertisseurs multi niveaux au réglage des éoliennes à base de machine asynchrone à double alimentation, Thèse de doctorat, No d’ordre. 162, Ecole Centrale de Lille.
[15] Eftichios, K. and Kostas, K., Design of a maximum power tracking system for wind-energy-conversion applications, IEEE Transaction on industrial electronics, vol. 53, No. 2, pp. 486-494, April 2006.