Search results for: Direct Simulation Mote Carlo method (DSMC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11095

Search results for: Direct Simulation Mote Carlo method (DSMC)

10345 A Dynamic Model of Air Pollution, Health,and Population Growth Using System Dynamics: A Study on Tehran-Iran (With Computer Simulation by the Software Vensim)

Authors: Keyvan Shahgholian, Hamid Hajihosseini

Abstract:

The significance of environmental protection is wellknown in today's world. The execution of any program depends on sufficient knowledge and required familiarity with environment and its pollutants. Taking advantage of a systematic method, as a new science, in environmental planning can solve many problems. In this article, air pollution in Tehran and its relationship with health and population growth have been analyzed using dynamic systems. Firstly, by using casual loops, the relationship between the parameters effective on air pollution in Tehran were taken into consideration, then these casual loops were turned into flow diagrams [6], and finally, they were simulated using the software Vensim [16]in order to conclude what the effect of each parameter will be on air pollution in Tehran in the next 10 years, how changing of one or more parameters influences other parameters, and which parameter among all other parameters requires to be controlled more.

Keywords: Air pollutions, Simulation, System Dynamics, Tehran, Vensim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4257
10344 A New Particle Filter Inspired by Biological Evolution: Genetic Filter

Authors: S. Park, J. Hwang, K. Rou, E. Kim

Abstract:

In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.

Keywords: Particle filter, genetic algorithm, evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
10343 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal

Abstract:

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4250
10342 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision

Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto

Abstract:

The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.

Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
10341 Numerical Simulation of Progressive Collapse for a Reinforced Concrete Building

Authors: Han-Soo Kim, Jae-Gyun Ahn, Hyo-Seung Ahn

Abstract:

Though nonlinear dynamic analysis using a specialized hydro-code such as AUTODYN is accurate and useful tool for progressive collapse assessment of a multi-story building subjected to blast load, it takes too much time to be applied to a practical simulation of progressive collapse of a tall building. In this paper, blast analysis of a RC frame structure using a simplified model with Reinforcement Contact technique provided in Ansys Workbench was introduced and investigated on its accuracy. Even though the simplified model has a fraction of elements of the detailed model, the simplified model with this modeling technique shows similar structural behavior under the blast load to the detailed model. The proposed modeling method can be effectively applied to blast loading progressive collapse analysis of a RC frame structure.

Keywords: Autodyn, Blast Load, Progressive Collapse, Reinforcement Contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4265
10340 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: Direct shear, shear strength, slag, UU test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
10339 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response under Sinusoidal Signal and White Noise Excitation

Authors: R. J. Chang

Abstract:

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise are analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.

Keywords: Cyclostationary, Duffing system, Gaussian linearization, sinusoidal signal and white noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
10338 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor

Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh

Abstract:

Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.

Keywords: Cantilever beam, electrical current measurement, forced excitation, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
10337 Two-dimensional Heat Conduction of Direct Cooling in the Rotor of an Electrical Generator(Numerical Analysis)

Authors: A. Kargar, A. Kianifar, H. Mohammadiun

Abstract:

Two-dimensional heat conduction within a composed solid material with a constant internal heat generation has been investigated numerically in a sector of the rotor a generator. The heat transfer between two adjacent materials is assumed to be purely conduction. Boundary conditions are assumed to be forced convection on the fluid side and adiabatic on symmetry lines. The control volume method is applied for the diffusion energy equation. Physical coordinates are transformed to the general curvilinear coordinates. Then by using a line-by-line method, the temperature distribution in a sector of the rotor has been determined. Finally, the results are normalized and the effect of cooling fluid on the maximum temperature of insulation is investigated.

Keywords: general curvilinear coordinates , jacobian, controlvolume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
10336 Comparative Review of Modulation Techniques for Harmonic Minimization in Multilevel Inverter

Authors: M. Suresh Kumar, K. Ramani

Abstract:

This paper proposed the comparison made between Multi-Carrier Pulse Width Modulation, Sinusoidal Pulse Width Modulation and Selective Harmonic Elimination Pulse Width Modulation technique for minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. In Multicarrier Pulse Width Modulation method by using Alternate Position of Disposition scheme for switching pulse generation to Multi-Level Inverter. Another carrier based approach; Sinusoidal Pulse Width Modulation method is also implemented to define the switching pulse generation system in the multi-level inverter. In Selective Harmonic Elimination method using Genetic Algorithm and Particle Swarm Optimization algorithm for define the required switching angles to eliminate low order harmonics from the inverter output voltage waveform and reduce the total harmonic distortion value. So, the results validate that the Selective Harmonic Elimination Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform in compared with Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method. In this paper, comparison of simulation results shows that the Selective Harmonic Elimination method can attain optimal harmonic minimization solution better than Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method.

Keywords: Multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation, Multi-Carrier Pulse Width Modulation, Total Harmonic Distortion, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2975
10335 Informal Inferential Reasoning Using a Modelling Approach within a Computer-Based Simulation

Authors: Theodosia Prodromou

Abstract:

The article investigates how 14- to 15- year-olds build informal conceptions of inferential statistics as they engage in a modelling process and build their own computer simulations with dynamic statistical software. This study proposes four primary phases of informal inferential reasoning for the students in the statistical modeling and simulation process. Findings show shifts in the conceptual structures across the four phases and point to the potential of all of these phases for fostering the development of students- robust knowledge of the logic of inference when using computer based simulations to model and investigate statistical questions.

Keywords: Inferential reasoning, learning, modelling, statistical inference, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
10334 Optimal Transmission Network Usage and Loss Allocation Using Matrices Methodology and Cooperative Game Theory

Authors: Baseem Khan, Ganga Agnihotri

Abstract:

Restructuring of Electricity supply industry introduced many issues such as transmission pricing, transmission loss allocation and congestion management. Many methodologies and algorithms were proposed for addressing these issues. In this paper a power flow tracing based method is proposed which involves Matrices methodology for the transmission usage and loss allocation for generators and demands. This method provides loss allocation in a direct way because all the computation is previously done for usage allocation. The proposed method is simple and easy to implement in a large power system. Further it is less computational because it requires matrix inversion only a single time. After usage and loss allocation cooperative game theory is applied to results for finding efficient economic signals. Nucleolus and Shapely value approach is used for optimal allocation of results. Results are shown for the IEEE 6 bus system and IEEE 14 bus system.

Keywords: Modified Kirchhoff Matrix, Power flow tracing, Transmission Pricing, Transmission Loss Allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
10333 Active Learning in Computer Exercises on Electronics

Authors: Zoja Raud, Valery Vodovozov

Abstract:

Modelling and simulation provide effective way to acquire engineering experience. An active approach to modelling and simulation proposed in the paper involves, beside the compulsory part directed by the traditional step-by-step instructions, the new optional part basing on the human’s habits to design thus stimulating the efforts towards success in active learning. Computer exercises as a part of engineering curriculum incorporate a set of effective activities. In addition to the knowledge acquired in theoretical training, the described educational arrangement helps to develop problem solutions, computation skills, and experimentation performance along with enhancement of practical experience and qualification.

Keywords: Modelling, simulation, engineering education, electronics, active learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
10332 Development of Manufacturing Simulation Model for Semiconductor Fabrication

Authors: Syahril Ridzuan Ab Rahim, Ibrahim Ahmad, Mohd Azizi Chik, Ahmad Zafir Md. Rejab, and U. Hashim

Abstract:

This research presents the development of simulation modeling for WIP management in semiconductor fabrication. Manufacturing simulation modeling is needed for productivity optimization analysis due to the complex process flows involved more than 35 percent re-entrance processing steps more than 15 times at same equipment. Furthermore, semiconductor fabrication required to produce high product mixed with total processing steps varies from 300 to 800 steps and cycle time between 30 to 70 days. Besides the complexity, expansive wafer cost that potentially impact the company profits margin once miss due date is another motivation to explore options to experiment any analysis using simulation modeling. In this paper, the simulation model is developed using existing commercial software platform AutoSched AP, with customized integration with Manufacturing Execution Systems (MES) and Advanced Productivity Family (APF) for data collections used to configure the model parameters and data source. Model parameters such as processing steps cycle time, equipment performance, handling time, efficiency of operator are collected through this customization. Once the parameters are validated, few customizations are made to ensure the prior model is executed. The accuracy for the simulation model is validated with the actual output per day for all equipments. The comparison analysis from result of the simulation model compared to actual for achieved 95 percent accuracy for 30 days. This model later was used to perform various what if analysis to understand impacts on cycle time and overall output. By using this simulation model, complex manufacturing environment like semiconductor fabrication (fab) now have alternative source of validation for any new requirements impact analysis.

Keywords: Advanced Productivity Family (APF), Complementary Metal Oxide Semiconductor (CMOS), Manufacturing Execution Systems (MES), Work In Progress (WIP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218
10331 Optimal Feedback Linearization Control of PEM Fuel Cell

Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh

Abstract:

This paper presents a new method to design nonlinear feedback linearization controller for PEMFCs (Polymer Electrolyte Membrane Fuel Cells). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEMFCs. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEMFC system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA (Non-Dominated Sorting Genetic Algorithm)-II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

Keywords: Feedback Linearization controller, NSGA, Optimal Control, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
10330 PID Controller Design for Following Control of Hard Disk Drive by Characteristic Ratio Assignment Method

Authors: Chaoraingern J., Trisuwannawat T., Numsomran A.

Abstract:

The author present PID controller design for following control of hard disk drive by characteristic ratio assignment method. The study in this paper concerns design of a PID controller which sufficiently robust to the disturbances and plant perturbations on following control of hard disk drive. Characteristic Ratio Assignment (CRA) is shown to be an efficient control technique to serve this requirement. The controller design by CRA is based on the choice of the coefficients of the characteristic polynomial of the closed loop system according to the convenient performance criteria such as equivalent time constant and ration of characteristic coefficient. Hence, in this study, CRA method is applied in PID controller design for following control of hard disk drive. Matlab simulation results shown that CRA design is fairly stable and robust whilst giving the convenience in controller-s parameters adjustment.

Keywords: Following Control, Hard Disk Drive, PID, CRA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
10329 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins

Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.

Keywords: Light olefins, OX-ZEO, syngas, ZnCrOx.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
10328 Study on the Variation Effects of Diverging Angleon Characteristics of Flow in Converging and Diverging Ducts by Numerical Method

Authors: Moghiman Mohammad, Amiri Maryam, Amiri Amirhosein

Abstract:

The present paper develops and validates a numerical procedure for the calculation of turbulent combustive flow in converging and diverging ducts and throuh simulation of the heat transfer processes, the amount of production and spread of Nox pollutant has been measured. A marching integration solution procedure employing the TDMA is used to solve the discretized equations. The turbulence model is the Prandtl Mixing Length method. Modeling the combustion process is done by the use of Arrhenius and Eddy Dissipation method. Thermal mechanism has been utilized for modeling the process of forming the nitrogen oxides. Finite difference method and Genmix numerical code are used for numerical solution of equations. Our results indicate the important influence of the limiting diverging angle of diffuser on the coefficient of recovering of pressure. Moreover, due to the intense dependence of Nox pollutant to the maximum temperature in the domain with this feature, the Nox pollutant amount is also in maximum level.

Keywords: Converging and Diverging Duct, Combustion, Diffuser, Diverging Angle, Nox

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
10327 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband

Authors: N. Azadi-Tinat, H. Oraizi

Abstract:

Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.

Keywords: Ultra-wideband, method of least square, multilayer microstrip filter, n-coupled transmission lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
10326 Multi-objective Optimization of Graph Partitioning using Genetic Algorithm

Authors: M. Farshbaf, M. R. Feizi-Derakhshi

Abstract:

Graph partitioning is a NP-hard problem with multiple conflicting objectives. The graph partitioning should minimize the inter-partition relationship while maximizing the intra-partition relationship. Furthermore, the partition load should be evenly distributed over the respective partitions. Therefore this is a multiobjective optimization problem (MOO). One of the approaches to MOO is Pareto optimization which has been used in this paper. The proposed methods of this paper used to improve the performance are injecting best solutions of previous runs into the first generation of next runs and also storing the non-dominated set of previous generations to combine with later generation's non-dominated set. These improvements prevent the GA from getting stuck in the local optima and increase the probability of finding more optimal solutions. Finally, a simulation research is carried out to investigate the effectiveness of the proposed algorithm. The simulation results confirm the effectiveness of the proposed method.

Keywords: Graph partitioning, Genetic algorithm, Multiobjective optimization, Pareto front.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
10325 An Investigation into the Isolation and Bandwidth Characteristics of X-Band Chireix PA Combiners

Authors: D. P. Clayton, E. A. Ball

Abstract:

This paper describes an investigation into the isolation characteristics and bandwidth performance of radio frequency (RF) combiners that are used as part of Chireix power amplifier (PA) architectures, designed for use in the X-Band range of frequencies. Combiner designs investigated are the typical Chireix and Wilkinson configurations which also include simulation of the Wilkinson using manufacturer’s data for the isolation resistor. Another simulation was the less common approach of using a Branchline coupler to form the combiner, as well as simulation results from adding an additional stage. This paper presents the findings of this investigation and compares the bandwidth performance and isolation characteristics to determine suitability.

Keywords: Bandwidth, Chireix, couplers, outphasing, power amplifiers, Wilkinson, X-Band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
10324 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method

Authors: Zheng Zhang, Xin Chen, Guoqing Ding

Abstract:

Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.

Keywords: Root canal length, apex locator, multifrequency impedance, sweep frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
10323 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder

Authors: Artem Nuriev, Olga Zaitseva

Abstract:

This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. The research approach develops Schlichting and Wang decomposition method. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.

Keywords: Oscillating cylinder, Secondary Streaming, Flow Regimes, Asymptotic and Bifurcation Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
10322 Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery

Authors: Arash Esmaeili, Omid Ghabouli

Abstract:

The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.

Keywords: Ethane recovery, Hydrocarbon dew point, Simulation, Water dew point

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
10321 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: Buildings, CFD simulation, natural ventilation, urban airflow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
10320 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance

Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria

Abstract:

This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.

Keywords: Plasma antenna, fluorescent tube, computer simulation technology, plasma parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
10319 A New Voting Approach to Texture Defect Detection Based on Multiresolutional Decomposition

Authors: B. B. M. Moasheri, S. Azadinia

Abstract:

Wavelets have provided the researchers with significant positive results, by entering the texture defect detection domain. The weak point of wavelets is that they are one-dimensional by nature so they are not efficient enough to describe and analyze two-dimensional functions. In this paper we present a new method to detect the defect of texture images by using curvelet transform. Simulation results of the proposed method on a set of standard texture images confirm its correctness. Comparing the obtained results indicates the ability of curvelet transform in describing discontinuity in two-dimensional functions compared to wavelet transform

Keywords: Curvelet, Defect detection, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
10318 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA

Authors: J. R. Wang, W.Y. Li, H.T. Lin, J.H. Yang, C. Shih, S.W. Chen

Abstract:

Fuel rod analysis program transient (FRAPTRAN)  code was used to study the fuel rod performance during a postulated  large break loss of coolant accident (LBLOCA) in Maanshan nuclear  power plant (NPP). Previous transient results from thermal hydraulic  code, TRACE, with the same LBLOCA scenario, were used as input  boundary conditions for FRAPTRAN. The simulation results showed  that the peak cladding temperatures and the fuel centerline  temperatures were all below the 10CFR50.46 LOCA criteria. In  addition, the maximum hoop stress was 18 MPa and the oxide  thickness was 0.003mm for the present simulation cases, which are all  within the safety operation ranges. The present study confirms that this  analysis method, the FRAPTRAN code combined with TRACE, is an  appropriate approach to predict the fuel integrity under LBLOCA with  operational ECCS.

 

Keywords: —FRAPTRAN, TRACE, LOCA, PWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
10317 Acausal and Causal Model Construction with FEM Approach Using Modelica

Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Junji Kaneko, Ken Kaminishi

Abstract:

Modelica has many advantages and it is very useful in modeling and simulation especially for the multi-domain with a complex technical system. However, the big obstacle for a beginner is to understand the basic concept and to build a new system model for a real system. In order to understand how to solve the simple circuit model by hand translation and to get a better understanding of how modelica works, we provide a detailed explanation about solver ordering system in horizontal and vertical sorting and make some proposals for improvement. In this study, some difficulties in using modelica software with the original concept and the comparison with Finite Element Method (FEM) approach is discussed. We also present our textual modeling approach using FEM concept for acausal and causal model construction. Furthermore, simulation results are provided that demonstrate the comparison between using textual modeling with original coding in modelica and FEM concept.

Keywords: FEM, acausal model, modelica, horizontal and vertical sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
10316 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit

Abstract:

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Keywords: Image processing technique, Feature detections, Surface registrations, Capturing multi-view images, Production costs, and Manufacturing processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975