Search results for: Texture Feature
388 Performance Evaluation of Data Transfer Protocol GridFTP for Grid Computing
Authors: Hiroyuki Ohsaki, Makoto Imase
Abstract:
In Grid computing, a data transfer protocol called GridFTP has been widely used for efficiently transferring a large volume of data. Currently, two versions of GridFTP protocols, GridFTP version 1 (GridFTP v1) and GridFTP version 2 (GridFTP v2), have been proposed in the GGF. GridFTP v2 supports several advanced features such as data streaming, dynamic resource allocation, and checksum transfer, by defining a transfer mode called X-block mode. However, in the literature, effectiveness of GridFTP v2 has not been fully investigated. In this paper, we therefore quantitatively evaluate performance of GridFTP v1 and GridFTP v2 using mathematical analysis and simulation experiments. We reveal the performance limitation of GridFTP v1, and quantitatively show effectiveness of GridFTP v2. Through several numerical examples, we show that by utilizing the data streaming feature, the average file transfer time of GridFTP v2 is significantly smaller than that of GridFTP v1.Keywords: Grid Computing, GridFTP, Performance Evaluation, Queuing Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411387 A Family of Distributions on Learnable Problems without Uniform Convergence
Authors: César Garza
Abstract:
In supervised binary classification and regression problems, it is well-known that learnability is equivalent to uniform convergence of the hypothesis class, and if a problem is learnable, it is learnable by empirical risk minimization. For the general learning setting of unsupervised learning tasks, there are non-trivial learning problems where uniform convergence does not hold. We present here the task of learning centers of mass with an extra feature that “activates” some of the coordinates over the unit ball in a Hilbert space. We show that the learning problem is learnable under a stable RLM rule. We introduce a family of distributions over the domain space with some mild restrictions for which the sample complexity of uniform convergence for these problems must grow logarithmically with the dimension of the Hilbert space. If we take this dimension to infinity, we obtain a learnable problem for which the uniform convergence property fails for a vast family of distributions.
Keywords: Statistical learning theory, learnability, uniform convergence, stability, regularized loss minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 354386 Comparative Study of Filter Characteristics as Statistical Vocal Correlates of Clinical Psychiatric State in Human
Authors: Thaweesak Yingthawornsuk, Chusak Thanawattano
Abstract:
Acoustical properties of speech have been shown to be related to mental states of speaker with symptoms: depression and remission. This paper describes way to address the issue of distinguishing depressed patients from remitted subjects based on measureable acoustics change of their spoken sound. The vocal-tract related frequency characteristics of speech samples from female remitted and depressed patients were analyzed via speech processing techniques and consequently, evaluated statistically by cross-validation with Support Vector Machine. Our results comparatively show the classifier's performance with effectively correct separation of 93% determined from testing with the subjectbased feature model and 88% from the frame-based model based on the same speech samples collected from hospital visiting interview sessions between patients and psychiatrists.Keywords: Depression, SVM, Vocal Extract, Vocal Tract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541385 The Study of Game Interface Improvement due to the Game Operation Dilemma of Player in the Side-Scrolling Shooting Game
Authors: Shih-Chieh Liao, Cheng-Yan Shuai
Abstract:
The feature of a side-scrolling shooting game is facing the surrounding enemy and barraging in an entire screen. The player will be in trouble when they are trying to do complicated operations because of the physical and system limitations of the joystick in the games. This study designed the prototype of a type of arcade stick by focus group and assessed by the expert. We selected the most representative joystick prototype and built the control system for the joystick. We conducted two experimental tests using time and bullet consumption as objective indicators, aiming to demonstrate its efficiency in the game. Finally, the prototype of L-1 solves the dilemma of scroll shooting games when the player uses the arcade stick and improves the function of the arcade stick.
Keywords: Joystick, user interface, side-scrolling shooting game, improved user experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211384 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image
Authors: K. Muthukannan, P. Latha
Abstract:
In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888383 Kazakhstan and Hague Conference on Private International Law: The Unification of Collision of Law in International Trade
Authors: Z. Baimagambetova, Zh. Sairambaeva
Abstract:
This article discusses the prospects of participation of the Republic of Kazakhstan in Hague Conference on Private International Law on the unification of collision law in the international trade. The article analyzes some conventions on international trade. The appropriate conclusions based on the opinions of scientists and experts in this field have been made. First, all issues presented in the form of gaps or spaces in conventions should be the subject to direct negotiations in the course of the activities of Hague Conference, and have a comprehensive feature, be transparent and taken under simplified procedure. Secondly, one should not underestimate the value of conventions that do not become active due to various reasons and having a positive impact on the development and improvement of national legislation and practice in the field of private international law. Thirdly, Kazakhstan has to reconsider its attitude to Hague Conference, having become its full member and aiming at providing constructive and fruitful cooperation with both the organization itself and its member states.Keywords: Hague Conference on Private International Law, Hague Conventions, unification, collision norms, international trade, international private law, integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397382 Combination of Tensile Strength and Elongation of Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy
Authors: M. Veerasham
Abstract:
The refractory high entropy alloys are potential materials for high-temperature applications because of their ability to retain high strength up to 1600°C. However, their practical applications were limited due to poor elongation at room temperature. Therefore, decreasing the average valence electron concentrations (VEC) is an effective design strategy to improve the intrinsic ductility of refractory high entropy alloys. In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step reverse rolling up to a 90% reduction in thickness. Subsequently, the reverse rolled 90% samples were utilized for annealing treatment at 800°C and 1000°C for 1 h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains body-centered cubic (BCC) single-phase; upon annealing at 800 °C, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C, respectively. The reverse rolled condition and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high ultimate tensile strength (UTS) without compromising loss of ductility called “strength-ductility” trade-off. The reverse-rolled 90% and annealing treatment carried out at temperature about 1000°C for 1 h consist of UTS 1430 MPa and 1556 MPa with an appreciable amount of 21% and 20% elongation, respectively. The development of hierarchical microstructure prevailed for the annealed 1000°C which led to the simultaneous increase in tensile strength and elongation.
Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 545381 Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans
Authors: Pei-Ju Chao, Tsair-Fwu Lee, Wei-Luen Huang, Long-Chang Chen, Te-Jen Su, Wen-Ping Chen
Abstract:
The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.Keywords: neural network, dosimetric index, radiation treatment, tumor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690380 Emotion Recognition Using Neural Network: A Comparative Study
Authors: Nermine Ahmed Hendy, Hania Farag
Abstract:
Emotion recognition is an important research field that finds lots of applications nowadays. This work emphasizes on recognizing different emotions from speech signal. The extracted features are related to statistics of pitch, formants, and energy contours, as well as spectral, perceptual and temporal features, jitter, and shimmer. The Artificial Neural Networks (ANN) was chosen as the classifier. Working on finding a robust and fast ANN classifier suitable for different real life application is our concern. Several experiments were carried out on different ANN to investigate the different factors that impact the classification success rate. Using a database containing 7 different emotions, it will be shown that with a proper and careful adjustment of features format, training data sorting, number of features selected and even the ANN type and architecture used, a success rate of 85% or even more can be achieved without increasing the system complicity and the computation time
Keywords: Classification, emotion recognition, features extraction, feature selection, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4698379 The Modified Eigenface Method using Two Thresholds
Authors: Yan Ma, ShunBao Li
Abstract:
A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495378 Communication in a Heterogeneous Ad Hoc Network
Authors: C. Benjbara, A. Habbani
Abstract:
Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.Keywords: Ad hoc, heterogeneous, ID-Node, OLSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749377 An Automated Method to Segment and Classify Masses in Mammograms
Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham
Abstract:
Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.Keywords: classification, computer-aided detection, featureextraction, mass detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657376 An Analysis of the Strategies Employed to Curate, Conserve and Digitize the Timbuktu Manuscripts
Authors: F. Saptouw
Abstract:
This paper briefly reviews the range of curatorial interventions made to preserve and display the Timbuktu Manuscripts. The government of South Africa and Mali collaborated to preserve the manuscripts, and brief notes will be presented about the value of archives in those specific spaces. The research initiatives of the Tombouctou Manuscripts Project, based at the University of Cape Town, feature prominently in the text. A brief overview of the history of the archive will be presented and its preservation as a key turning point in curating the intellectual history of the continent. The strategies of preservation, curation, publication and digitization are presented as complimentary interventions. Each materialization of the manuscripts contributes something significant; the complexity of the contribution is dependent primarily on the format of presentation. This integrated reading of the manuscripts is presented as a means to gain a more nuanced understanding of the past, which greatly surpasses how much information would be gleaned from relying on a single media format.Keywords: Archive, curatorship, cultural heritage, museum practice, Timbuktu manuscripts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648375 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering
Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad
Abstract:
These days, the field of tissue engineering is getting serious attention due to its usefulness. Bone tissue engineering helps to address and sort-out the critical sized and non-healing orthopedic problems by the creation of manmade bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature “parametric sweep”, with which we will be able to predict the oxygen, glucose and cell density dynamics, more accurately. We will fix these problems by modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes and by transient analysis.
Keywords: Bone tissue engineering, Transient Analysis, Scaffolds, fabrication techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459374 Behavioral Response of Dogs to Interior Environment: An Exploratory Study on Design Parameters for Designing Dog Boarding Centers in Indian Context
Authors: M. R. Akshaya, Veena Rao
Abstract:
Pet population in India is increasing phenomenally owing to the changes in urban lifestyle with increasing number of single professionals, single parents, delayed parenthood etc. The animal companionship as a means of reducing stress levels, deriving emotional support, and unconditional love provided by dogs are a few reasons attributed for increasing pet ownership. The consequence is the booming of the pet care products and dog care centers catering to the different requirements of rearing the pets. Dog care centers quite popular in tier 1 metros of India cater to the requirement of the dog owners providing space for the dogs in absence of the owner. However, it is often reported that the absence of the owner leads to destructive and exploratory behavior issues; the main being the anxiety disorders. In the above context, it becomes imperative for a designer to design dog boarding centers that help in reducing the separation anxiety in dogs keeping in mind the different interior design parameters. An exploratory research with focus group discussion is employed involving a group of dog owners, behaviorists, proprietors of day care as well as boarding centers, and veterinarians to understand their perception on the significance of different interior parameters of color, texture, ventilation, aroma therapy and acoustics as a means of reducing the stress levels in dogs sent to the boarding centers. The data collected is organized as thematic networks thus enabling the listing of the interior design parameters that needs to be considered in designing dog boarding centers.
Keywords: Behavioral response, design parameters, dog boarding centers, interior environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060373 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346372 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification
Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh
Abstract:
The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.
Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113371 OCR For Printed Urdu Script Using Feed Forward Neural Network
Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan
Abstract:
This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035370 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets
Authors: R. K. Agrawal, Rajni Bala
Abstract:
Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.
Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058369 Development of Optimized User Interface of Public Transit Navigator for a Smartphone
Authors: Masahiro Taketa, Masaki Ito, Takao Kawamura, Kazunori Sugahara
Abstract:
We develop a new interface for Bus-Net which is optimized for a smartphone. We are continuing to develop the shortest path planning system of public transportation called "Bus-Net" in Tottori prefecture as web application to improve the usability of public transportation. Recent trend of computing platform, however has shifted to an advanced mobile device called a smartphone such as iPhone and Android in Japan. A smartphone has different characters with existing feature phone in terms of OS, large touche panel, and several other features. We derive a guideline to design the new interface for a smartphone to full use of the functionality. The guideline is about simplicity of user-s operation, location awareness and usability. We developed the new interface for “Bus-Net" on iPhone referring to the guideline. Due to the evaluation, the application interface we developed is better than the existing web-based interface in terms of the usability.Keywords: Path Planning, Public Transportation, Smartphone, User Interface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805368 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes
Authors: R. Ziaie Moayed, M. Mortezaee
Abstract:
An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.
Keywords: Soil nailing, pullout capacity, FHWA, grout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689367 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760366 DWT Based Image Steganalysis
Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal
Abstract:
‘Steganalysis’ is one of the challenging and attractive interests for the researchers with the development of information hiding techniques. It is the procedure to detect the hidden information from the stego created by known steganographic algorithm. In this paper, a novel feature based image steganalysis technique is proposed. Various statistical moments have been used along with some similarity metric. The proposed steganalysis technique has been designed based on transformation in four wavelet domains, which include Haar, Daubechies, Symlets and Biorthogonal. Each domain is being subjected to various classifiers, namely K-nearest-neighbor, K* Classifier, Locally weighted learning, Naive Bayes classifier, Neural networks, Decision trees and Support vector machines. The experiments are performed on a large set of pictures which are available freely in image database. The system also predicts the different message length definitions.
Keywords: Steganalysis, Moments, Wavelet Domain, KNN, K*, LWL, Naive Bayes Classifier, Neural networks, Decision trees, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571365 A Framework for Review Spam Detection Research
Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim
Abstract:
With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.
Keywords: Fake reviews, Feature collection, Opinion spam, Spam detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517364 An AR/VR Based Approach Towards the Intuitive Control of Mobile Rescue Robots
Authors: Jürgen Roßmann, André Kupetz, Roland Wischnewski
Abstract:
An intuitive user interface for the teleoperation of mobile rescue robots is one key feature for a successful exploration of inaccessible and no-go areas. Therefore, we have developed a novel framework to embed a flexible and modular user interface into a complete 3-D virtual reality simulation system. Our approach is based on a client-server architecture to allow for a collaborative control of the rescue robot together with multiple clients on demand. Further, it is important that the user interface is not restricted to any specific type of mobile robot. Therefore, our flexible approach allows for the operation of different robot types with a consistent concept and user interface. In laboratory tests, we have evaluated the validity and effectiveness of our approach with the help of two different robot platforms and several input devices. As a result, an untrained person can intuitively teleoperate both robots without needing a familiarization time when changing the operating robot.
Keywords: Teleoperation of mobile robots, augmented reality, user interface, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848363 Region-Based Image Fusion with Artificial Neural Network
Authors: Shuo-Li Hsu, Peng-Wei Gau, I-Lin Wu, Jyh-Horng Jeng
Abstract:
For most image fusion algorithms separate relationship by pixels in the image and treat them more or less independently. In addition, they have to be adjusted different parameters in different time or weather. In this paper, we propose a region–based image fusion which combines aspects of feature and pixel-level fusion method to replace only by pixel. The basic idea is to segment far infrared image only and to add information of each region from segmented image to visual image respectively. Then we determine different fused parameters according different region. At last, we adopt artificial neural network to deal with the problems of different time or weather, because the relationship between fused parameters and image features are nonlinear. It render the fused parameters can be produce automatically according different states. The experimental results present the method we proposed indeed have good adaptive capacity with automatic determined fused parameters. And the architecture can be used for lots of applications.Keywords: Image fusion, Region-based fusion, Segmentation, Neural network, Multi-sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258362 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface
Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori
Abstract:
In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876361 Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy
Authors: R.Sukesh Kumar, Abhisek Verma, Jasprit Singh
Abstract:
In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.Keywords: conditional entropy, multi-level thresholding, segmentation, two dimensional image histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998360 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering
Authors: Hamza Nejib, Okba Taouali
Abstract:
This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052359 Retrieving Similar Segmented Objects Using Motion Descriptors
Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou
Abstract:
The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.
Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302