Search results for: Analytical Model
7204 A Block World Problem Based Sudoku Solver
Authors: Luciana Abednego, Cecilia Nugraheni
Abstract:
There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.
Keywords: Sudoku puzzle, Sudoku solver, block world problem, parameterized multi agent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22437203 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement
Authors: Tudor Barbu
Abstract:
We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.Keywords: Image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation scheme, finite differences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13057202 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.
Keywords: Parking system, optimal location, response time, S/R machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6797201 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.
Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14207200 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows
Authors: J. P. Panda, K. Sasmal, H. V. Warrior
Abstract:
Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9567199 Estimating the Runoff Using the Simple Tank Model and Comparing it with the SCS-CN Model - A Case Study of the Dez River Basin
Authors: H. Alaleh, N. Hedayat, A. Alaleh, H. Ayazi, A. Ruhani
Abstract:
Run-offs are considered as important hydrological factors in feasibility studies of river engineering and irrigation-related projects under arid and semi-arid condition. Flood control is one of the crucial factor, the management of which while mitigates its destructive consequences, abstracts considerable volume of renewable water resources. The methodology applied here was based on Mizumura, which applied a mathematical model for simple tank to simulate the rainfall-run-off process in a particular water basin using the data from the observational hydrograph. The model was applied in the Dez River water basin adjacent to Greater Dezful region, Iran in order to simulate and estimate the floods. Results indicated that the calculated hydrographs using the simple tank method, SCS-CN model and the observation hydrographs had a close proximity. It was also found that on average the flood time and discharge peaks in the simple tank were closer to the observational data than the CN method. On the other hand, the calculated flood volume in the CN model was significantly closer to the observational data than the simple tank model.
Keywords: Simple tank, Dez River, run-off, lag time, excess rainfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25937198 Quantitative Study for Exchange of Gases from Open Sewer Channel to Atmosphere
Authors: Asif Mansoor, Nasiruddin Khan, Noreen Jamil
Abstract:
In this communication a quantitative modeling approach is applied to construct model for the exchange of gases from open sewer channel to the atmosphere. The data for the exchange of gases of the open sewer channel for the year January 1979 to December 2006 is utilized for the construction of the model. The study reveals that stream flow of the open sewer channel exchanges the toxic gases continuously with time varying scale. We find that the quantitative modeling approach is more parsimonious model for these exchanges. The usual diagnostic tests are applied for the model adequacy. This model is beneficial for planner and managerial bodies for the improvement of implemented policies to overcome future environmental problems.Keywords: Open sewer channel, Industrial waste, Municipalwaste, Gases exchange, Atmosphere, Stochastic models, Diagnosticschecks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15587197 Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Western Intake Structure in Dez Diversion Weir in Dezful, Iran
Authors: A.H. Sajedipoor, N. Hedayat, M. Mashal
Abstract:
Sedimentation is a hydraulic phenomenon that is emerging as a serious challenge in river engineering. When the flow reaches a certain state that gather potential energy, it shifts the sediment load along channel bed. The transport of such materials can be in the form of suspended and bed loads. The movement of these along the river course and channels and the ways in which this could influence the water intakes is considered as the major challenges for sustainable O&M of hydraulic structures. This could be very serious in arid and semi-arid regions like Iran, where inappropriate watershed management could lead to shifting a great deal of sediments into the reservoirs and irrigation systems. This paper aims to investigate sedimentation in the Western Canal of Dez Diversion Weir in Iran, identifying factors which influence the process and provide ways in which to mitigate its detrimental effects by using the SHARC Software. For the purpose of this paper, data from the Dezful water authority and Dezful Hydrometric Station pertinent to a river course of about 6 Km were used. Results estimated sand and silt bed loads concentrations to be 193 ppm and 827ppm respectively. Given the available data on average annual bed loads and average suspended sediment loads of 165ppm and 837ppm, there was a significant statistical difference (16%) between the sand grains, whereas no significant difference (1.2%) was find in the silt grain sizes. One explanation for such finding being that along the 6 Km river course there was considerable meandering effects which explains recent shift in the hydraulic behavior along the stream course under investigation. The sand concentration in downstream relative to present state of the canal showed a steep descending curve. Sediment trapping on the other hand indicated a steep ascending curve. These occurred because the diversion weir was not considered in the simulation model.Keywords: SHARC model, sedimentation, Western canal, Dezdiversion weir
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16447196 An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials
Authors: José Julio de C. Pituba
Abstract:
This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.
Keywords: Damage model, plastic strain, unilateral effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18297195 CFD Simulation of Condensing Vapor Bubble using VOF Model
Authors: Seong-Su Jeon, Seong-Jin Kim, Goon-Cherl Park
Abstract:
In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.
Keywords: Bubble condensation, CFD modeling, Subcooled boiling flow, VOF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67507194 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations
Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim
Abstract:
A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.
Keywords: Gerotor pump, high speed, simulations, aeronautic, aeration, cavitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5687193 New Dynamic Constitutive Model for OFHC Copper Film
Authors: Jin Sung Kim, Hoon Huh
Abstract:
The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson−Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.
Keywords: Rate dependent material properties, Dynamic constitutive model, OFHC copper film, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24187192 Order Partitioning in Hybrid MTS/MTO Contexts using Fuzzy ANP
Authors: H. Rafiei, M. Rabbani
Abstract:
A novel concept to balance and tradeoff between make-to-stock and make-to-order has been hybrid MTS/MTO production context. One of the most important decisions involved in the hybrid MTS/MTO environment is determining whether a product is manufactured to stock, to order, or hybrid MTS/MTO strategy. In this paper, a model based on analytic network process is developed to tackle the addressed decision. Since the regarded decision deals with the uncertainty and ambiguity of data as well as experts- and managers- linguistic judgments, the proposed model is equipped with fuzzy sets theory. An important attribute of the model is its generality due to diverse decision factors which are elicited from the literature and developed by the authors. Finally, the model is validated by applying to a real case study to reveal how the proposed model can actually be implemented.Keywords: Fuzzy analytic network process, Hybrid make-tostock/ make-to-order, Order partitioning, Production planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21787191 A Study of Thermal Convection in Two Porous Layers Governed by Brinkman's Model in Upper Layer and Darcy's Model in Lower Layer
Authors: M. S. Al-Qurashi
Abstract:
This work examines thermal convection in two porous layers. Flow in the upper layer is governed by Brinkman-s equations model and in the lower layer is governed by Darcy-s model. Legendre polynomials are used to obtain numerical solution when the lower layer is heated from below.Keywords: Brinkman's law, Darcy's law, porous layers, Legendre polynomials, the Oberbeck-Boussineq approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13857190 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)
Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento
Abstract:
The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.Keywords: Food contamination, extraneous materials, foreign matter, surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37047189 Application of Fractional Model Predictive Control to Thermal System
Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi
Abstract:
The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.
Keywords: Fractional model predictive control, fractional order systems, thermal system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12387188 Modeling of Statistically Multiplexed Non Uniform Activity VBR Video
Authors: J. P. Dubois
Abstract:
This paper reports the feasibility of the ARMA model to describe a bursty video source transmitting over a AAL5 ATM link (VBR traffic). The traffic represents the activity of the action movie "Lethal Weapon 3" transmitted over the ATM network using the Fore System AVA-200 ATM video codec with a peak rate of 100 Mbps and a frame rate of 25. The model parameters were estimated for a single video source and independently multiplexed video sources. It was found that the model ARMA (2, 4) is well-suited for the real data in terms of average rate traffic profile, probability density function, autocorrelation function, burstiness measure, and the pole-zero distribution of the filter model.Keywords: ARMA, ATM networks, burstiness, multimediatraffic, VBR video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13707187 An Automation of Check Focusing on CRUD for Requirements Analysis Model in UML
Authors: Shinpei Ogata, Yoshitaka Aoki, Hirotaka Okuda, Saeko Matsuura
Abstract:
A key to success of high quality software development is to define valid and feasible requirements specification. We have proposed a method of model-driven requirements analysis using Unified Modeling Language (UML). The main feature of our method is to automatically generate a Web user interface mock-up from UML requirements analysis model so that we can confirm validity of input/output data for each page and page transition on the system by directly operating the mock-up. This paper proposes a support method to check the validity of a data life cycle by using a model checking tool “UPPAAL" focusing on CRUD (Create, Read, Update and Delete). Exhaustive checking improves the quality of requirements analysis model which are validated by the customers through automatically generated mock-up. The effectiveness of our method is discussed by a case study of requirements modeling of two small projects which are a library management system and a supportive sales system for text books in a university.Keywords: CRUD, Model Checking, Model Driven Development, Requirements Analysis, Unified Modeling Language, UPPAAL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16747186 Combustion Analysis of Suspended Sodium Droplet
Authors: T. Watanabe
Abstract:
Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.
Keywords: Combustion, analysis, sodium, droplet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6997185 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model
Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi
Abstract:
Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22107184 Simplified Stress Gradient Method for Stress-Intensity Factor Determination
Authors: Jeries J. Abou-Hanna
Abstract:
Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.
Keywords: Fracture mechanics, finite element method, stress intensity factor, stress gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7677183 A Simplified Higher-Order Markov Chain Model
Authors: Chao Wang, Ting-Zhu Huang, Chen Jia
Abstract:
In this paper, we present a simplified higher-order Markov chain model for multiple categorical data sequences also called as simplified higher-order multivariate Markov chain model.
Keywords: Higher-order multivariate Markov chain model, Categorical data sequences, Multivariate Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32927182 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line
Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh
Abstract:
Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22017181 Studies on Race Car Aerodynamics at Wing in Ground Effect
Authors: Dharni Vasudhevan Venkatesan, Shanjay K E, Sujith Kumar H, Abhilash N A, Aswin Ram D, V.R.Sanal Kumar
Abstract:
Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.
Keywords: External aerodynamics, External Flow Choking, Race car aerodynamics, Wing in Ground Effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58007180 A Numerical Model Simulation for an Updraft Gasifier Using High Temperature Steam
Authors: T. M. Ismail, M. Abd El-Salam
Abstract:
A mathematical model study was carried out to investigate gasification of biomass fuels using high temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promise way in its capability and sensitivity for the parameter affects that influence the gasification process.
Keywords: Computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28277179 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems
Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang
Abstract:
Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.Keywords: Wind resource assessment, Weather Research and Forecasting (WRF) Model, python, GIS software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23967178 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: Cellular automata, neural cellular automata, deep learning, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8677177 Periodic Orbits in a Delayed Nicholson's Blowflies Model
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, a delayed Nicholson,s blowflies model with a linear harvesting term is investigated. Regarding the delay as a bifurcation parameter, we show that Hopf bifurcation will occur when the delay crosses a critical value. Numerical simulations supporting the theoretical findings are carried out.
Keywords: Nicholson's blowflies model, Stability, Hopf bifurcation, Delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16097176 A Model Predictive Control and Time Series Forecasting Framework for Supply Chain Management
Authors: Philip Doganis, Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
Model Predictive Control has been previously applied to supply chain problems with promising results; however hitherto proposed systems possessed no information on future demand. A forecasting methodology will surely promote the efficiency of control actions by providing insight on the future. A complete supply chain management framework that is based on Model Predictive Control (MPC) and Time Series Forecasting will be presented in this paper. The proposed framework will be tested on industrial data in order to assess the efficiency of the method and the impact of forecast accuracy on overall control performance of the supply chain. To this end, forecasting methodologies with different characteristics will be implemented on test data to generate forecasts that will serve as input to the Model Predictive Control module.Keywords: Forecasting, Model predictive control, production planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19777175 Dynamic Model and Control of a New Quadrotor Unmanned Aerial Vehicle with Tilt-Wing Mechanism
Authors: Kaan T. Oner, Ertugrul Cetinsoy, Mustafa Unel, Mahmut F. Aksit, Ilyas Kandemir, Kayhan Gulez
Abstract:
In this work a dynamic model of a new quadrotor aerial vehicle that is equipped with a tilt-wing mechanism is presented. The vehicle has the capabilities of vertical take-off/landing (VTOL) like a helicopter and flying horizontal like an airplane. Dynamic model of the vehicle is derived both for vertical and horizontal flight modes using Newton-Euler formulation. An LQR controller for the vertical flight mode has also been developed and its performance has been tested with several simulations.Keywords: Control, Dynamic model, LQR, Quadrotor, Tilt-wing, VTOL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4316