Search results for: mechanical and thermal properties
3660 Thermodynamic Evaluation of Coupling APR1400 with a Thermal Desalination Plant
Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan
Abstract:
Growing human population has placed increased demands on water supplies and spurred a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP, an IAEA sponsored program. DE-TOP has capabilities to analyze power generation systems coupled to desalination plants through various steam extraction positions, taking into consideration the isolation loop between the nuclear and the thermal desalination facilities (i.e., for radiological isolation).Keywords: APR1400, Cogeneration, Desalination, DE-TOP, IAEA, MED, MED-TVC, MSF, RO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28363659 Application of HVOF Thermal Spraying inHigh Speed Gas Compressor Shafts
Authors: M.Jalali Azizpour, S.norouzi, H.mohammadi majd, H.Talebi, A.Ghamari
Abstract:
In this paper, the application of thermal spray coatings in high speed shafts by a revolution up to 23000 RPM has been studied. Gas compressor shafts are worn in contact zone with journal therefore will be undersized. Wear mechanisms of compressor shaft were identified. The predominant wear mechanism is abrasion wear. The worn surface was coated by hard WC-Co cermets using high velocity oxy fuel (HVOF) after preparation. The shafts were in satisfactory service in 8000h period. The metallurgical and Tribological studies has been made on the worn and coated shaft using optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction.Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24783658 Preparation and Properties of Biopolymer from L-Lactide (LL) and ε-Caprolactone (CL)
Authors: A. Buasri, N. Chaiyut, K. Iamma, K. Kongcharoen, K. Cheunsakulpong
Abstract:
Biopolymers have gained much attention as ecofriendly alternatives to petrochemical-based plastics because they are biodegradable and can be produced from renewable feedstocks. One class of biopolyester with many potential environmentally friendly applications is polylactic acid (PLA) and polycaprolactone (PCL). The PLA/PCL biodegradable copolyesters were synthesized by bulk ring-opening copolymerization of successively added Llactide (LL) and ε-caprolactone (CL) in the presence of toluene, using 1-hexanol as initiator and stannous octoate (Sn(Oct)2) as catalyst. Reaction temperature, reaction time and amount of catalyst were evaluated to obtain optimum reaction conditions. The results showed that the %conversion increased with increases in reaction temperature and reaction time, but after a critical amount of catalyst was reached the %conversion decreased. The yield of PLA/PCL biopolymer achieved 98.02% at the reaction temperature 160 °C, amount of catalyst 0.3 mol% and reaction time of 48 h. In addition, the thermal properties of the product were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).
Keywords: Biopolymer, Polylactic Acid (PLA), Polycaprolactone (PCL), L-Lactide (LL), ε-Caprolactone (CL)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45003657 Nanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior
Authors: A. Mallick
Abstract:
The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism and microstructural characteristic at different test condition was discussed extensively. At room temperature, relatively lower value of activation volume (AV) and higher value of strain rate sensitivity (SRS) suggests that new rate controlling mechanism accommodating plastic flow in the present nanocrystalline sample. The deformation behavior and the microstructural character of the present samples were discussed in details.Keywords: Nanocrystalline, tensile properties, temperature effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14603656 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites
Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash
Abstract:
Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.Keywords: Gamma ray irradiation, Hard Ferrite, Magnetic coefficient, Radiation dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26583655 Literature Review on Metallurgical Properties of Ti/Al Weld Joint Using Laser Beam Welding
Authors: K. Kalaiselvan, Naresh Subramania Warrier, S. Elavarasi
Abstract:
Several situations arise in industrial practice which calls for joining of dissimilar metals. With increasing demand in the application requirements, dissimilar metal joining becomes inevitable in modern engineering industries. The metals employed are the structure for effective and utilization of the special properties of each metal. The purpose of this paper is to present the research and development status of titanium (Ti) and aluminium (Al) dissimilar alloys weldment by the researchers worldwide. The detailed analysis of problems faced during welding of dissimilar metal joint for Ti/Al metal combinations are discussed. Microstructural variations in heat affected zone (HAZ), fusion zone (FZ), Intermetallic compound (IMC) layer and surface fracture of weldments are analysed. Additionally, mechanical property variations and microstructural feature have been studied by the researchers. The paper provides a detailed literature review of Ti/Al dissimilar metal joint microchemistry and property variation across the weldment.
Keywords: Laser beam welding, titanium, aluminium, metallurgical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4463654 Behavior of Optical Fiber Aged in CTAC Solutions
Authors: R. El Abdi, A. D. Rujinski, R. M. Boumbimba, M. Poulain
Abstract:
The evolution of silica optical fiber strength aged in cetyltrimethylammonium chloride solution (CTAC) has been investigated. If the solution containing surfactants presents appreciable changes in physical and chemical properties at the critical micelle concentration (CMC), a non negligible mechanical behavior fiber change is observed for silica fiber aged in cationic surfactants as CTAC which can lead to optical fiber reliability questioning. The purpose of this work is to study the mechanical behavior of silica coated and naked optical fibers in contact with CTAC solution at different concentrations. Result analysis proves that the immersion in CTAC drastically decreases the fiber strength and specially near the CMC point. Beyond CMC point, a small increase of fiber strength is analyzed and commented.
Keywords: Optical fiber, CMC point, CTAC surfactant, fiber strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19183653 Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults
Authors: Maria S. Trimintziou, Michael G. Sakellariou, Prodromos N. Psarropoulos
Abstract:
The current study focuses on the seismic design of offshore pipelines against active faults. After an extensive literature review of the provisions of the seismic norms worldwide and of the available analytical methods, the study simulates numerically (through finite-element modeling and strain-based criteria) the distress of offshore pipelines subjected to PGDs induced by active normal and reverse seismic faults at the seabed. Factors, such as the geometrical properties of the fault, the mechanical properties of the ruptured soil formations, and the pipeline characteristics, are examined. After some interesting conclusions regarding the seismic vulnerability of offshore pipelines, potential cost-effective mitigation measures are proposed taking into account constructability issues.Keywords: Active faults, Seismic design, offshore pipelines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22003652 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes
Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak
Abstract:
The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the singleaxis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.Keywords: Biomass, briquettes, densification, fuel quality, moisture content, density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27693651 Design and Microfabrication of a High Throughput Thermal Cycling Platform with Various Annealing Temperatures
Authors: Sin J. Chen, Jyh J. Chen
Abstract:
This study describes a micro device integrated with multi-chamber for polymerase chain reaction (PCR) with different annealing temperatures. The device consists of the reaction polydimethylsiloxane (PDMS) chip, a cover glass chip, and is equipped with cartridge heaters, fans, and thermocouples for temperature control. In this prototype, commercial software is utilized to determine the geometric and operational parameters those are responsible for creating the denaturation, annealing, and extension temperatures within the chip. Two cartridge heaters are placed at two sides of the chip and maintained at two different temperatures to achieve a thermal gradient on the chip during the annealing step. The temperatures on the chip surface are measured via an infrared imager. Some thermocouples inserted into the reaction chambers are used to obtain the transient temperature profiles of the reaction chambers during several thermal cycles. The experimental temperatures compared to the simulated results show a similar trend. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.Keywords: Polymerase chain reaction, thermal cycles, temperature gradient, micro-fabrication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16493650 Thermal Stability of a Vertical SOI-Based Capacitorless One-Transistor DRAM with Trench-Body Structure
Authors: Po-Hsieh Lin, Jyi-Tsong Lin
Abstract:
A vertical SOI-based MOSFET with trench body structure operated as 1T DRAM cell at various temperatures has been studied and investigated. Different operation temperatures are assigned for the device for its performance comparison, thus the thermal stability is carefully evaluated for the future memory device applications. Based on the simulation, the vertical SOI-based MOSFET with trench body structure demonstrates the electrical characteristics properly and possess conspicuous kink effect at various operation temperatures. Transient characteristics were also performed to prove that its programming window values and retention time behaviors are acceptable when the new 1T DRAM cell is operated at high operation temperature.Keywords: SOI, 1T DRAM, thermal stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15743649 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study
Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali
Abstract:
This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.
Keywords: Thermal comfort, thermal sensation, predicted mean vote, thermal environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5743648 Adhesion Strength Evaluation Methods in Thermally Sprayed Coatings
Authors: M.Jalali Azizpour, H.Mohammadi majd, Milad Jalali, H.Fasihi
Abstract:
The techniques for estimating the adhesive and cohesive strength in high velocity oxy fuel (HVOF) thermal spray coatings have been discussed and compared. The development trend and the last investigation have been studied. We will focus on benefits and limitations of these methods in different process and materials.
Keywords: Adhesion, Bonding strength, Cohesion, HVOF Thermal spray
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31393647 Epoxidized-Transesterified Cotton Seed Oil for Temperature-Dependent Austempering Process
Authors: R. M. Dodo, Z. Musa, K. A. Bello, U. Abdullahi, G. A. Faruna
Abstract:
Temperature dependent austempering of high carbon steel using epoxidized-transesterified cotton seed oil (ETO) was examined. Five sets of samples were heated to 850 oC and held for one hour and then quenched in an oil bath of ETO at 250 oC for one hour. The same procedure was performed on the remaining samples, which were austempered at 270 oC, 290 oC, 310 oC, and 330 oC. Next, mechanical property tests were conducted. The austempered samples were then analyzed for microstructure using a scanning electron microscope (SEM). The results indicate that tensile strength and hardness decrease with increasing temperature, while impact strength improved with rising temperature. It was observed that 270 oC is the best austempering temperature, as it produces austempered samples with the best combination of mechanical properties.
Keywords: Epoxidized-transesterified cotton seed oil, austempering temperature, high carbon steel, bainitic structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173646 The Building Thermal Performance and Carbon Sequestration Evaluation for Psophocarpus tetrogonobulus on Biofaçade Wall in the Tropical Environment
Authors: Abdul M. A. Rahman , Foong S. Yeok, Atikah F. Amir
Abstract:
Plants are commonly known for its positive correlation in reducing temperature. Since it can benefit buildings by modifying the microclimate, it-s also believed capable of reducing the internal temperature. Various experiments have been done in Universiti Sains Malaysia, Penang to investigate the comparison in thermal benefits between two rooms, one being a typical control room (exposed wall) and the other a biofacade room (plant shaded wall). The investigations were conducted during non-rainy season for approximately a month. Climbing plant Psophocarpus tetrogonobulus from legume species was selected as insulation for the biofacade wall. Conclusions were made on whether the biofacade can be used to tackle the energy efficiency, based on the parameters taken into consideration.Keywords: biofacade, thermal benefits, carbon sequestration, Psophocarpus tetrogonobulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51633645 Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer
Authors: S. Iijima, K. Nakayama, D. Kuchar, M. Kubota, H. Matsuda
Abstract:
Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.Keywords: Regenerative Heat Exchange, Self Combustion, Toluene, Volatile Organic Compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24423644 Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli
Authors: A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer
Abstract:
Combined conduction-free convection heat transfer in vertical eccentric annuli is numerically investigated using a finitedifference technique. Numerical results, representing the heat transfer parameters such as annulus walls temperature, heat flux, and heat absorbed in the developing region of the annulus, are presented for a Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal conductivity ratio 10, inner and outer wall dimensionless thicknesses 0.1 and 0.2, respectively, and dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are subjected to thermal boundary conditions, which are obtained by heating one wall isothermally whereas keeping the other wall at inlet fluid temperature. In the present paper, the annulus heights required to achieve thermal full development for prescribed eccentricities are obtained. Furthermore, the variation in the height of thermal full development as function of the geometrical parameter, i.e., eccentricity is also investigated.Keywords: Conjugate natural convection, eccentricity, heat transfer, vertical eccentric annuli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22223643 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach
Abstract:
In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.Keywords: Multi-physical domain, conduction model, port-based modeling, dynamic interaction, physical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13013642 Sustainability of Carbon Nanotube-Reinforced Concrete
Authors: Rashad Al Araj, Adil K. Tamimi
Abstract:
Concrete, despite being one of the most produced materials in the world, still has weaknesses and drawbacks. Significant concern of the cementitious materials in structural applications is their quasi-brittle behavior, which causes the material to crack and lose its durability. One of the very recently proposed mitigations for this problem is the implementation of nanotechnology in the concrete mix by adding carbon nanotubes (CNTs) to it. CNTs can enhance the critical mechanical properties of concrete as a structural material. Thus, this paper demonstrates a state-of-the-art review of reinforcing concrete with CNTs, emphasizing on the structural performance. It also goes over the properties of CNTs alone, the present methods and costs associated with producing them, the possible special applications of concretes reinforced with CNTs, the key challenges and drawbacks that this new technology still encounters, and the most reliable practices and methodologies to produce CNT-reinforced concrete in the lab. This work has shown that the addition of CNTs to the concrete mix in percentages as low as 0.25% weight of cement could increase the flexural strength and toughness of concrete by more than 45% and 25%, respectively, and enhance other durability-related properties, given that an effective dispersion of CNTs in the cementitious mix is achieved. Since nano reinforcement for cementitious materials is a new technology, many challenges have to be tackled before it becomes practiced at the mass level.
Keywords: Sustainability, carbon nanotube, microsilica, concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14763641 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading
Authors: Emre Kara, Şura Karakuzu, Ahmet F. Geylan, Metehan Demir, Kadir Koç, Halil Aykul
Abstract:
The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum alloy foam core, the skins made of three different types of fabrics and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances by aiming the analyses of their flexural performance in terms of absorbed energy, peak force values and collapse mechanisms. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force and absorbed energy values, collapse mechanisms and adhesion quality. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.
Keywords: Adhesive and adhesion, Aluminum foam, Bending, Collapse mechanisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22153640 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition
Authors: Konstantinos Sotiriadis, Olesia Mikhailova
Abstract:
In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste; (b) fly ash geopolymer mortar with 5% PES waste; (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.
Keywords: Fly ash, geopolymers, polyester waste, composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24973639 Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation
Authors: Jeong-Won Kang
Abstract:
Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.Keywords: Graphene, pressure sensor, circular graphene nanoflake, molecular dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17173638 Development of Cellulose Panels with Porous Structure for Sustainable Building Insulation
Authors: P. Garbagnoli, M. Musitelli, B. Del Curto, MP. Pedeferri
Abstract:
The study and development of an innovative material for building insulation is really important for a sustainable society in order to improve comfort and reducing energy consumption. The aim of this work is the development of insulating panels for sustainable buildings based on an innovative material made by cardboard and Phase Change Materials (PCMs). The research has consisted in laboratory tests whose purpose has been the obtaining of the required properties for insulation panels: lightweight, porous structures and mechanical resistance. PCMs have been used for many years in the building industry as smart insulation technology because of their properties of storage and release high quantity of latent heat at useful specific temperatures [1]- [2]. The integration of PCMs into cellulose matrix during the waste paper recycling process has been developed in order to obtain a composite material. Experiments on the productive process for the realization of insulating panels were done in order to make the new material suitable for building application. The addition of rising agents demonstrated the possibility to obtain a lighter structure with better insulation properties. Several tests were conducted to verify the new panel properties. The results obtained have shown the possibility to realize an innovative and sustainable material suitable to replace insulating panels currently used.Keywords: Sustainability, recycling, waste cardboard, PCM, cladding system, insulating materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22933637 Tensile Test of Corroded Strand and Maintenance of Corroded Prestressed Concrete Girders
Authors: Jeon Chi-Ho, Lee Jae-Bin, Shim Chang-Su
Abstract:
National bridge inventory in Korea shows that the number of old prestressed concrete (PSC) bridgeover 30 years of service life is rapidly increasing. Recently tendon corrosion is one of the most critical issues in the maintenance of PSC bridges. In this paper, mechanical properties of corroded strands, which were removed from old bridges, were evaluated using tensile test. In the result, the equations to express the mechanical behavior of corroded strand were derived and compared to existing equation. For the decision of tendon replacement, it is necessary to evaluate the effect of corrosion level on strength and ductility of the structure. Considerations on analysis of PSC girders were introduced, and decision making on tendon replacement was also proposed.
Keywords: Prestressed concrete bridge, prestressing steel, corrosion, strength, ductility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13093636 Process of Reprivatization of Agricultural Properties in the Selected European Countries
Authors: Adam Niewiadomski
Abstract:
Political transition of agricultural properties in Poland and the former German Democratic Republic (GDR) after 1989 had to include not only Reprivatization but also the issue of returning the properties in kind to their former owners. Restitution in kind applied in GDR to all forms of ownership which were subject to expropriation between 1933 and 1989 except for properties taken over during Soviet occupation in 1945-49. This issue was one of the flashpoints during the process of ownership changes. Privatization, limited as it was, took place in unequal legal environment where only one group of owners was privileged. Executing restitution in kind created a feeling of uncertainty among potential real estate buyers.Keywords: Reprivatization, agricultural properties, German Democratic Republic, Privatization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13323635 Thermal Treatment Influence on the Quality of Rye Bread Packaged in Different Polymer Films
Authors: Tatjana Rakcejeva, Lija Dukalska, Olga Petrova, Dace Klava, Emils Kozlinskis, Martins Sabovics
Abstract:
this study was carried out to investigate the changes in quality parameters of rye bread packaged in different polymer films during convection air-flow thermal treatment process. Whole loafs of bread were placed in polymer pouches, which were sealed in reduced pressure air ambiance, bread was thermally treated in at temperature +(130; 140; and 150) ± 5 ºC within 40min, as long as the core temperature of the samples have reached accordingly +80±1 ºC. For bread packaging pouches were used: anti-fog Mylar®OL12AF and thermo resistant combined polymer material. Main quality parameters was analysed using standard methods: temperature in bread core, bread crumb and crust firmness value, starch granules volume and microflora. In the current research it was proved, that polymer films significantly influence rye bread quality parameters changes during thermal treatment. Thermo resistant combined polymer material film could be recommendable for packaged rye bread pasteurization, for maximal bread quality parameter keeping.Keywords: bread, thermal treatment, bread crumb, bread crust, starch granule's volume.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33653634 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.
Keywords: Functionally graded piezoelectric material, mixed-mode crack, non-local theory, Schmidt method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9983633 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images
Authors: Amit Kr. Happy
Abstract:
This paper is motivated by the importance of multi-sensor image fusion with specific focus on Infrared (IR) and Visible image (VI) fusion for various applications including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like Visible camera & IR Thermal Imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (IR) that may be reflected or self-emitted. A digital color camera captures the visible source image and a thermal IR camera acquires the thermal source image. In this paper, some image fusion algorithms based upon Multi-Scale Transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, but they also make it hard to become deployed in system and applications that require real-time operation, high flexibility and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.
Keywords: Image fusion, IR thermal imager, multi-sensor, Multi-Scale Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4303632 Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation
Authors: Wei Bai, Ling-Wei Kong, Ai-Guo Guo
Abstract:
Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.
Keywords: Lateritic soil, bearing capacity, extenics theory, plate loading test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14193631 Development of the Measurement Apparatus for the Effective Thermal Conductivity of Core Material
Authors: Jongmin Kim, Tae-Ho Song
Abstract:
A measurement apparatus is designed and fabricated to measure the effective thermal conductivity (keff) of a VIP (vacuum insulation panel) core specimen under various vacuum states and external loads. The apparatus consists of part for measuring keff, and parts for controlling external load and vacuum condition. Uncertainty of the apparatus is validated by measuring the standard reference material and comparing with commercial devices with VIP samples. Assessed uncertainty is maximum 2.5 % in case of the standard reference material, 10 % in case of VIP samples. Using the apparatus, keff of glass paper under various vacuum levels is examined.Keywords: Effective thermal conductivity, guarded hot plate method, vacuum insulation panel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091