Search results for: Variance based Haar-Like feature.
11285 Accurate Visualization of Graphs of Functions of Two Real Variables
Authors: Zeitoun D. G., Thierry Dana-Picard
Abstract:
The study of a real function of two real variables can be supported by visualization using a Computer Algebra System (CAS). One type of constraints of the system is due to the algorithms implemented, yielding continuous approximations of the given function by interpolation. This often masks discontinuities of the function and can provide strange plots, not compatible with the mathematics. In recent years, point based geometry has gained increasing attention as an alternative surface representation, both for efficient rendering and for flexible geometry processing of complex surfaces. In this paper we present different artifacts created by mesh surfaces near discontinuities and propose a point based method that controls and reduces these artifacts. A least squares penalty method for an automatic generation of the mesh that controls the behavior of the chosen function is presented. The special feature of this method is the ability to improve the accuracy of the surface visualization near a set of interior points where the function may be discontinuous. The present method is formulated as a minimax problem and the non uniform mesh is generated using an iterative algorithm. Results show that for large poorly conditioned matrices, the new algorithm gives more accurate results than the classical preconditioned conjugate algorithm.
Keywords: Function singularities, mesh generation, point allocation, visualization, collocation least squares method, Augmented Lagrangian method, Uzawa's Algorithm, Preconditioned Conjugate Gradien
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170811284 Sorption of Nickel by Hypnea Valentiae: Application of Response Surface Methodology
Authors: M. Rajasimman, K. Murugaiyan
Abstract:
In this work, sorption of nickel from aqueous solution on hypnea valentiae, red macro algae, was investigated. Batch experiments have been carried out to find the effect of various parameters such as pH, temperature, sorbent dosage, metal concentration and contact time on the sorption of nickel using hypnea valentiae. Response surface methodology (RSM) is employed to optimize the process parameters. Based on the central composite design, quadratic model was developed to correlate the process variables to the response. The most influential factor on each experimental design response was identified from the analysis of variance (ANOVA). The optimum conditions for the sorption of nickel were found to be: pH – 5.1, temperature – 36.8oC, sorbent dosage – 5.1 g/L, metal concentration – 100 mg/L and contact time – 30 min. At these optimized conditions the maximum removal of nickel was found to be 91.97%. A coefficient of determination R2 value 0.9548 shows the fitness of response surface methodology in this work.
Keywords: Optimization, metal, Hypnea valentia, response surface methodology, red algae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166311283 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents
Authors: Chothmal, Basant Agarwal
Abstract:
Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.Keywords: Feature selection methods, Machine learning, NB, One-class SVM, Sentiment Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330311282 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.
Keywords: Data mining, Korean linguistic feature, literary fiction, relationship extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179511281 Face Reconstruction and Camera Pose Using Multi-dimensional Descent
Authors: Varin Chouvatut, Suthep Madarasmi, Mihran Tuceryan
Abstract:
This paper aims to propose a novel, robust, and simple method for obtaining a human 3D face model and camera pose (position and orientation) from a video sequence. Given a video sequence of a face recorded from an off-the-shelf digital camera, feature points used to define facial parts are tracked using the Active- Appearance Model (AAM). Then, the face-s 3D structure and camera pose of each video frame can be simultaneously calculated from the obtained point correspondences. This proposed method is primarily based on the combined approaches of Gradient Descent and Powell-s Multidimensional Minimization. Using this proposed method, temporarily occluded point including the case of self-occlusion does not pose a problem. As long as the point correspondences displayed in the video sequence have enough parallax, these missing points can still be reconstructed.
Keywords: Camera Pose, Face Reconstruction, Gradient Descent, Powell's Multidimensional Minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158411280 A Collusion-Resistant Distributed Signature Delegation Based on Anonymous Mobile Agent
Authors: Omaima Bamasak
Abstract:
This paper presents a novel method that allows an agent host to delegate its signing power to an anonymous mobile agent in such away that the mobile agent does not reveal any information about its host-s identity and, at the same time, can be authenticated by the service host, hence, ensuring fairness of service provision. The solution introduces a verification server to verify the signature generated by the mobile agent in such a way that even if colluding with the service host, both parties will not get more information than what they already have. The solution incorporates three methods: Agent Signature Key Generation method, Agent Signature Generation method, Agent Signature Verification method. The most notable feature of the solution is that, in addition to allowing secure and anonymous signature delegation, it enables tracking of malicious mobile agents when a service host is attacked. The security properties of the proposed solution are analyzed, and the solution is compared with the most related work.Keywords: Anonymous signature delegation, collusion resistance, e-commerce fairness, mobile agent security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144511279 Analysis of Electrocardiograph (ECG) Signal for the Detection of Abnormalities Using MATLAB
Authors: Durgesh Kumar Ojha, Monica Subashini
Abstract:
The proposed method is to study and analyze Electrocardiograph (ECG) waveform to detect abnormalities present with reference to P, Q, R and S peaks. The first phase includes the acquisition of real time ECG data. In the next phase, generation of signals followed by pre-processing. Thirdly, the procured ECG signal is subjected to feature extraction. The extracted features detect abnormal peaks present in the waveform Thus the normal and abnormal ECG signal could be differentiated based on the features extracted. The work is implemented in the most familiar multipurpose tool, MATLAB. This software efficiently uses algorithms and techniques for detection of any abnormalities present in the ECG signal. Proper utilization of MATLAB functions (both built-in and user defined) can lead us to work with ECG signals for processing and analysis in real time applications. The simulation would help in improving the accuracy and the hardware could be built conveniently.
Keywords: ECG Waveform, Peak Detection, Arrhythmia, Matlab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200811278 A Training Model for Successful Implementation of Enterprise Resource Planning
Authors: Volker Heierhoff, Aurilla Aurelie Bechina Arntzen, Gerrit Muller
Abstract:
It well recognized that one feature that makes a successful company is its ability to successfully align its business goals with its information communication technologies platform. Enterprise Resource Planning (ERP) systems contribute to achieve better performance by integrating various business functions and providing support for information flows. However, the technological systems complexity is known to prevent the business users to exploit in an efficient way the Enterprise Resource Planning Systems (ERP). This paper aims to investigate the role of training in improving the usage of ERP systems. To this end, we have designed an instrument survey to employees of a Norwegian multinational global provider of technology solutions. Based on the analysis of collected data, we have delineated a training model that could be high relevance for both researchers and practitioners as a step towards a better understanding of ERP system implementation.Keywords: Business User Training, Enterprise resource planning system, Global consulting company, Role and responsibilities
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295411277 Political Preconditions for National Values of the Kazakhstan Nation
Authors: Zhazira Kuanyshbayeva
Abstract:
Article is devoted to the problem of Kazakhstan people national values in the conditions of the Republic of Kazakhstan independence. Formation of ethnos national values is viewed as the mandatory constituent of this process in contemporary conditions. The article shows the dynamics of forming socialspiritual basis of Kazakhstan people-s national values. It depicts peculiarities of interethnic relations in poly-ethnic and multiconfessional Kazakhstan. The study reviews in every detail various directions of the state social policy development in the sphere of national values. It is aimed to consolidation of the society to achieve the shared objective, i.e. building democratic and civilized state. The author discloses peculiarities of ethnos national values development using specific sources. It is underlined that renewal and modernization of Kazakhstan society represents new stage in the national value development, and its typical feature is integration process based on peoples- friendship, cultural principles of interethnic communication.
Keywords: Interethnic relation, Kazakhstan people, national policy, national values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181411276 Validation of an Acuity Measurement Tool for Maternity Services
Authors: Cherryl Lowe
Abstract:
Background - The TrendCare Patient Dependency System is currently used by a large number of maternity Services across Australia, New Zealand and Singapore. In 2012, 2013 and 2014 validation studies were initiated in all three countries to validate the acuity tools used for women in labour, and postnatal mothers and babies. This paper will present the findings of the validation study. Aim - The aim of this study was to; identify if the care hours provided by the TrendCare acuity system was an accurate reflection of the care required by women and babies; obtain evidence of changes required to acuity indicators and/or category timings to ensure the TrendCare acuity system remains reliable and valid across a range of maternity care models in three countries. Method - A non-experimental action research methodology was used across maternity services in four District Health Boards in New Zealand, a large tertiary and a large secondary maternity service in Singapore and a large public maternity service in Australia. Standardised data collection forms and timing devices were used to collect midwife contact times, with women and babies included in the study. Rejection processes excluded samples when care was not completed/rationed, and contact timing forms were incomplete. The variances between actual timed midwife/mother/baby contact and the TrendCare acuity category times were identified and investigated. Results - Thirty two (88.9%) of the 36 TrendCare acuity category timings, fell within the variance tolerance levels when compared to the actual timings recorded for midwifery care. Four (11.1%) TrendCare categories provided less minutes of care than the actual timings and exceeded the variance tolerance level. These were all night shift category timings. Nine postnatal categories were not able to be compared as the sample size for these categories was statistically insignificant. 100% of labour ward TrendCare categories matched actual timings for midwifery care, all falling within the variance tolerance levels. The actual time provided by core midwifery staff to assist lead maternity carer (LMC) midwives in New Zealand labour wards showed a significant deviation to previous studies. The findings of the study demonstrated the need for additional time allocations in TrendCare to accommodate an increased level of assistance given to LMC midwives. Conclusion - The results demonstrated the importance of regularly validating the TrendCare category timings with actual timings of the care hours provided. It was evident from the findings that variances to models of care and length of stay in maternity units have increased midwifery workloads on the night shift. The level of assistance provided by the core labour ward staff to the LMC midwife has increased substantially. Outcomes - As a consequence of this study, changes were made to the night duty TrendCare maternity categories, additional acuity indicators were developed and times for assisting LMC midwives in labour ward increased. The updated TrendCare version was delivered to maternity services in 2014.
Keywords: Maternity, acuity, midwifery research, midwifery workloads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332611275 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments
Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas
Abstract:
Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.
Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284611274 Video Quality assessment Measure with a Neural Network
Authors: H. El Khattabi, A. Tamtaoui, D. Aboutajdine
Abstract:
In this paper, we present the video quality measure estimation via a neural network. This latter predicts MOS (mean opinion score) by providing height parameters extracted from original and coded videos. The eight parameters that are used are: the average of DFT differences, the standard deviation of DFT differences, the average of DCT differences, the standard deviation of DCT differences, the variance of energy of color, the luminance Y, the chrominance U and the chrominance V. We chose Euclidean Distance to make comparison between the calculated and estimated output.Keywords: video, neural network MLP, subjective quality, DCT, DFT, Retropropagation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180611273 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: D. Hişam, S. İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.
Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17111272 Investigations Into the Turning Parameters Effect on the Surface Roughness of Flame Hardened Medium Carbon Steel with TiN-Al2O3-TiCN Coated Inserts based on Taguchi Techniques
Authors: Samir Khrais, Adel Mahammod Hassan , Amro Gazawi
Abstract:
The aim of this research is to evaluate surface roughness and develop a multiple regression model for surface roughness as a function of cutting parameters during the turning of flame hardened medium carbon steel with TiN-Al2O3-TiCN coated inserts. An experimental plan of work and signal-to-noise ratio (S/N) were used to relate the influence of turning parameters to the workpiece surface finish utilizing Taguchi methodology. The effects of turning parameters were studied by using the analysis of variance (ANOVA) method. Evaluated parameters were feed, cutting speed, and depth of cut. It was found that the most significant interaction among the considered turning parameters was between depth of cut and feed. The average surface roughness (Ra) resulted by TiN-Al2O3- TiCN coated inserts was about 2.44 μm and minimum value was 0.74 μm. In addition, the regression model was able to predict values for surface roughness in comparison with experimental values within reasonable limit.Keywords: Medium carbon steel, Prediction, Surface roughness, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177111271 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94811270 Wood Species Recognition System
Authors: Bremananth R, Nithya B, Saipriya R
Abstract:
The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246211269 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs
Authors: K. N. Dinesh Babu, P. K. Gargava
Abstract:
Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.
Keywords: Differential protection, intelligent electronic device (IED), 2nd harmonic, inrush inhibit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104911268 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier
Authors: Hassan Jassim Motlak
Abstract:
A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to the symmetrical input stage. P-Spice simulation results are obtained using 0.18μm MIETEC CMOS process parameters and supply voltage of ±1.2V, 50μA biasing current. The p-spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, openloop gain bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/μS, THD of -63dB and DC consumption power (PC) of 2mW.
Keywords: Pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285411267 Accurate Fault Classification and Section Identification Scheme in TCSC Compensated Transmission Line using SVM
Authors: Pushkar Tripathi, Abhishek Sharma, G. N. Pillai, Indira Gupta
Abstract:
This paper presents a new approach for the protection of Thyristor-Controlled Series Compensator (TCSC) line using Support Vector Machine (SVM). One SVM is trained for fault classification and another for section identification. This method use three phase current measurement that results in better speed and accuracy than other SVM based methods which used single phase current measurement. This makes it suitable for real-time protection. The method was tested on 10,000 data instances with a very wide variation in system conditions such as compensation level, source impedance, location of fault, fault inception angle, load angle at source bus and fault resistance. The proposed method requires only local current measurement.Keywords: Fault Classification, Section Identification, Feature Selection, Support Vector Machine (SVM), Thyristor-Controlled Series Compensator (TCSC)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252711266 A New Approach to Workforce Planning
Authors: M. Othman, N. Bhuiyan, G. J. Gouw
Abstract:
In today-s global and competitive market, manufacturing companies are working hard towards improving their production system performance. Most companies develop production systems that can help in cost reduction. Manufacturing systems consist of different elements including production methods, machines, processes, control and information systems. Human issues are an important part of manufacturing systems, yet most companies do not pay sufficient attention to them. In this paper, a workforce planning (WP) model is presented. A non-linear programming model is developed in order to minimize the hiring, firing, training and overtime costs. The purpose is to determine the number of workers for each worker type, the number of workers trained, and the number of overtime hours. Moreover, a decision support system (DSS) based on the proposed model is introduced using the Excel-Lingo software interfacing feature. This model will help to improve the interaction between the workers, managers and the technical systems in manufacturing.Keywords: Decision Support System, Human Factors, Manufacturing System, Workforce Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254811265 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.
Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529711264 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: Emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98911263 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80811262 Inferring User Preference Using Distance Dependent Chinese Restaurant Process and Weighted Distribution for a Content Based Recommender System
Authors: Bagher Rahimpour Cami, Hamid Hassanpour, Hoda Mashayekhi
Abstract:
Nowadays websites provide a vast number of resources for users. Recommender systems have been developed as an essential element of these websites to provide a personalized environment for users. They help users to retrieve interested resources from large sets of available resources. Due to the dynamic feature of user preference, constructing an appropriate model to estimate the user preference is the major task of recommender systems. Profile matching and latent factors are two main approaches to identify user preference. In this paper, we employed the latent factor and profile matching to cluster the user profile and identify user preference, respectively. The method uses the Distance Dependent Chines Restaurant Process as a Bayesian nonparametric framework to extract the latent factors from the user profile. These latent factors are mapped to user interests and a weighted distribution is used to identify user preferences. We evaluate the proposed method using a real-world data-set that contains news tweets of a news agency (BBC). The experimental results and comparisons show the superior recommendation accuracy of the proposed approach related to existing methods, and its ability to effectively evolve over time.Keywords: Content-based recommender systems, dynamic user modeling, extracting user interests, predicting user preference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81811261 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.
Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45511260 EEG Spikes Detection, Sorting, and Localization
Authors: Mazin Z. Othman, Maan M. Shaker, Mohammed F. Abdullah
Abstract:
This study introduces a new method for detecting, sorting, and localizing spikes from multiunit EEG recordings. The method combines the wavelet transform, which localizes distinctive spike features, with Super-Paramagnetic Clustering (SPC) algorithm, which allows automatic classification of the data without assumptions such as low variance or Gaussian distributions. Moreover, the method is capable of setting amplitude thresholds for spike detection. The method makes use of several real EEG data sets, and accordingly the spikes are detected, clustered and their times were detected.Keywords: EEG time localizations, EEG spike detection, superparamagnetic algorithm, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255011259 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation
Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu
Abstract:
Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.
Keywords: POI, Road network, spatial information expression, selection method, distribution pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103911258 Statistical Analysis and Optimization of a Process for CO2 Capture
Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi
Abstract:
CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.
Keywords: Bubble column reactor, CO2 capture, Response Surface Methodology, water desalination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184511257 Aliveness Detection of Fingerprints using Multiple Static Features
Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim
Abstract:
Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192611256 Preliminary Chaos Analyses of Explosion Earthquakes Followed by Harmonic Tremors at Semeru Volcano, East Java, Indonesia
Authors: Sukir Maryanto, Didik R. Santosa, Iyan Mulyana, Muhammad Hendrasto
Abstract:
Successive event of explosion earthquake and harmonic tremor recorded at Semeru volcano were analyzed to investigate the dynamical system regarding to their eruptive mechanism. The eruptive activity at Semeru volcano East Java, Indonesia is intermittent emission of ash and bombs with Strombolian style which occurred at interval of 15 to 45 minutes. The explosive eruptions accompanied by explosion earthquakes and followed by volcanic tremor which generated by continuous emission of volcanic ash. The spectral and Lyapunov exponent of successive event of explosion and harmonic tremor were analyzed. Peak frequencies of explosion earthquakes range 1.2 to 1.9 Hz and those of the harmonic tremor have peak frequency range 1.5 — 2.2 Hz. The phase space is reconstructed and evaluated based on the Lyapunov exponents. Harmonic tremors have smaller Lyapunov exponent than explosion earthquakes. It can be considerably as correlated complexity of the mechanism from the variance of spectral and fractal dimension and can be concluded that the successive event of harmonic tremor and explosions are chaotic.
Keywords: Semeru volcano, explosion earthquakes, harmonic tremor, lyapunov exponent, chaotic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579