Search results for: Solid particle erosion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1450

Search results for: Solid particle erosion

760 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes

Authors: İnci M. Erhan

Abstract:

A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.

Keywords: Bessel functions, Eigenfunction expansion, Quantum billiard, Schrödinger equation, Spherical harmonics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5188
759 Value Index, a Novel Decision Making Approach for Waste Load Allocation

Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
758 Screening of Factors Affecting the Enzymatic Hydrolysis of Empty Fruit Bunches in Aqueous Ionic Liquid and Locally Produced Cellulase System

Authors: Md. Z. Alam, Amal A. Elgharbawy, Muhammad Moniruzzaman, Nassereldeen A. Kabbashi, Parveen Jamal

Abstract:

The enzymatic hydrolysis of lignocellulosic biomass is one of the obstacles in the process of sugar production, due to the presence of lignin that protects the cellulose molecules against cellulases. Although the pretreatment of lignocellulose in ionic liquid (IL) system has been receiving a lot of interest; however, it requires IL removal with an anti-solvent in order to proceed with the enzymatic hydrolysis. At this point, introducing a compatible cellulase enzyme seems more efficient in this process. A cellulase enzyme that was produced by Trichoderma reesei on palm kernel cake (PKC) exhibited a promising stability in several ILs. The enzyme called PKC-Cel was tested for its optimum pH and temperature as well as its molecular weight. One among evaluated ILs, 1,3-diethylimidazolium dimethyl phosphate [DEMIM] DMP was applied in this study. Evaluation of six factors was executed in Stat-Ease Design Expert V.9, definitive screening design, which are IL/ buffer ratio, temperature, hydrolysis retention time, biomass loading, cellulase loading and empty fruit bunches (EFB) particle size. According to the obtained data, IL-enzyme system shows the highest sugar concentration at 70 °C, 27 hours, 10% IL-buffer, 35% biomass loading, 60 Units/g cellulase and 200 μm particle size. As concluded from the obtained data, not only the PKC-Cel was stable in the presence of the IL, also it was actually stable at a higher temperature than its optimum one. The reducing sugar obtained was 53.468±4.58 g/L which was equivalent to 0.3055 g reducing sugar/g EFB. This approach opens an insight for more studies in order to understand the actual effect of ILs on cellulases and their interactions in the aqueous system. It could also benefit in an efficient production of bioethanol from lignocellulosic biomass.

Keywords: Cellulase, hydrolysis, lignocellulose, pretreatment, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
757 Effects of Boundary Conditions on the Dynamic Values of Solid Structures

Authors: F. Kadioglu, M. Z. Polat, A. R. Gunay

Abstract:

Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices, and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate the possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. First, the governing equations of beam specimens related to the free-free and clamped-free boundary conditions were expressed to be able to find their natural frequencies, flexural modulus and damping values. To get a clear idea of the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and that the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained. It was obvious that the set-up with clamped-free boundary conditions was not able to produce correct/reliable damping values for the specimens with low inherent damping. 

Keywords: Boundary conditions, damping, dynamic values, non-contact measuring systems, vibrating beam technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406
756 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract

Authors: Kenia Martínez, Geniel Talavera, Juan Alonso

Abstract:

Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.

Keywords: Antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
755 Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content

Authors: Ml. López-Moreno, Le. Lugo Avilés, Fr. Román, J. Lugo Rosas, Ja. Hernández-Viezcas, Jr. Peralta-Videa, Jl. Gardea-Torresdey

Abstract:

Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results costeffective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost.

Keywords: Compost, Coriandrum sativum, nutrients, waste sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
754 Curing Time Effect on Behavior of Cement Treated Marine Clay

Authors: H. W. Xiao, F. H. Lee

Abstract:

Cement stabilization has been widely used for improving the strength and stiffness of soft clayey soils. Cement treated soil specimens used to investigate the stress-strain behaviour in the laboratory study are usually cured for 7 days. This paper examines the effects of curing time on the strength and stress strain behaviour of cement treated marine clay under triaxial loading condition. Laboratory-prepared cement treated Singapore marine clay with different mix proportion S-C-W (soil solid-cement solid-water) and curing time (7 days to 180 days) was investigated through conducting unconfined compressive strength test and triaxial test. The results show that the curing time has a significant effect on the unconfined compressive strength u q , isotropic compression behaviour and stress strain behaviour. Although the primary yield loci of the cement treated soil specimens with the same mix proportion expand with curing time, they are very narrowly banded and have nearly the same shape after being normalized by isotropic compression primary stress ' py p . The isotropic compression primary yield stress ' py p was shown to be linearly related to unconfined compressive strength u q for specimens with different curing time and mix proportion. The effect of curing time on the hardening behaviour will diminish with consolidation stress higher than isotropic compression primary yield stress but its damping rate is dependent on the cement content.

Keywords: Cement treated soil, curing time effect, hardening behaviour, isotropic compression primary yield stress, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3878
753 Thermodynamic Study of Seed Oil Extraction by Organic Solvents

Authors: Zhila Safari, Ali Ashrafizadeh, Najaf Hedayat

Abstract:

Thermodynamics characterization Sesame oil extraction by Acetone, Hexane and Benzene has been evaluated. The 120 hours experimental Data were described by a simple mathematical model. According to the simulation results and the essential criteria, Acetone is superior to other solvents but under certain conditions where oil extraction takes place Hexane is superior catalyst.

Keywords: Liquid-solid extraction, seed oil, ThermodynamicStudy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
752 Long-term Monitor of Seawater by using TiO2:Ru Sensing Electrode for Hard Clam Cultivation

Authors: Jung-Chuan Chou, Cheng-Wei Chen

Abstract:

The hard clam (meretrix lusoria) cultivated industry has been developed vigorously for recent years in Taiwan, and seawater quality determines the cultivated environment. The pH concentration variation affects survival rate of meretrix lusoria immediately. In order to monitor seawater quality, solid-state sensing electrode of ruthenium-doped titanium dioxide (TiO2:Ru) is developed to measure hydrogen ion concentration in different cultivated solutions. Because the TiO2:Ru sensing electrode has high chemical stability and superior sensing characteristics, thus it is applied as a pH sensor. Response voltages of TiO2:Ru sensing electrode are readout by instrument amplifier in different sample solutions. Mean sensitivity and linearity of TiO2:Ru sensing electrode are 55.20 mV/pH and 0.999 from pH1 to pH13, respectively. We expect that the TiO2:Ru sensing electrode can be applied to real environment measurement, therefore we collect two sample solutions by different meretrix lusoria cultivated ponds in the Yunlin, Taiwan. The two sample solutions are both measured for 200 seconds after calibration of standard pH buffer solutions (pH7, pH8 and pH 9). Mean response voltages of sample 1 and sample 2 are -178.758 mV (Standard deviation=0.427 mV) and -180.206 mV (Standard deviation =0.399 mV), respectively. Response voltages of the two sample solutions are between pH 8 and pH 9 which conform to weak alkali range and suitable meretrix lusoria growth. For long-term monitoring, drift of cultivated solutions (sample 1 and sample 2) are 1.16 mV/hour and 1.03 mV/hour, respectively.

Keywords: Co-sputtering system, Hard clam (meretrix lusoria), Ruthenium-doped titanium dioxide, Solid-state sensing electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
751 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module

Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey

Abstract:

This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.

Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141
750 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
749 Different Tillage Possibilities for Second Crop in Green Bean Farming

Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz

Abstract:

In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.

Keywords: Soil tillage, green bean, vegetative, generative, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
748 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil

Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman

Abstract:

The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.

Keywords: Solid waste, waste of electric and electronic equipment, waste management, institutional generation of solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
747 Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs

Authors: Andrej Golowin, Viktor Denk, Axel Riepe

Abstract:

Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.

Keywords: Damage tolerance, Monte-Carlo method, fan blade and disc, laser shock peening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
746 Dynamic Analysis of Porous Media Using Finite Element Method

Authors: M. Pasbani Khiavi, A. R. M. Gharabaghi, K. Abedi

Abstract:

The mechanical behavior of porous media is governed by the interaction between its solid skeleton and the fluid existing inside its pores. The interaction occurs through the interface of gains and fluid. The traditional analysis methods of porous media, based on the effective stress and Darcy's law, are unable to account for these interactions. For an accurate analysis, the porous media is represented in a fluid-filled porous solid on the basis of the Biot theory of wave propagation in poroelastic media. In Biot formulation, the equations of motion of the soil mixture are coupled with the global mass balance equations to describe the realistic behavior of porous media. Because of irregular geometry, the domain is generally treated as an assemblage of fmite elements. In this investigation, the numerical formulation for the field equations governing the dynamic response of fluid-saturated porous media is analyzed and employed for the study of transient wave motion. A finite element model is developed and implemented into a computer code called DYNAPM for dynamic analysis of porous media. The weighted residual method with 8-node elements is used for developing of a finite element model and the analysis is carried out in the time domain considering the dynamic excitation and gravity loading. Newmark time integration scheme is developed to solve the time-discretized equations which are an unconditionally stable implicit method Finally, some numerical examples are presented to show the accuracy and capability of developed model for a wide variety of behaviors of porous media.

Keywords: Dynamic analysis, Interaction, Porous media, time domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
745 Numerical Simulation of Cavitation and Aeration in Discharge Gated Tunnel of a Dam Based on the VOF Method

Authors: Razieh Jalalabadi, Norouz Mohammad Nouri

Abstract:

Cavitation, usually known as a destructive phenomenon, involves turbulent unsteady two-phase flow. Having such features, cavitating flows have been turned to a challenging topic in numerical studies and many researches are being done for better understanding of bubbly flows and proposing solutions to reduce its consequent destructive effects. Aeration may be regarded as an effective protection against cavitation erosion in many hydraulic structures, like gated tunnels. The paper concerns numerical simulation of flow in discharge gated tunnel of a dam using ing RNG k -ε model coupled with the volume of fluid (VOF) method and the zone which is susceptible of cavitation inception in the tunnel is predicted. In the second step, a vent is considered in the mentioned zone for aeration and the numerical simulation is done again to study the effects of aeration. The results show that aeration is an impressively useful method to exclude cavitation in mentioned tunnels.

Keywords: Aeration, Cavitation, Two-phase flow, TurbulentFlow, Volume of Fluid (VOF) method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
744 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428
743 Variational Iteration Method for the Solution of Boundary Value Problems

Authors: Olayiwola M.O., Gbolagade A .W., Akinpelu F. O.

Abstract:

In this work, we present a reliable framework to solve boundary value problems with particular significance in solid mechanics. These problems are used as mathematical models in deformation of beams. The algorithm rests mainly on a relatively new technique, the Variational Iteration Method. Some examples are given to confirm the efficiency and the accuracy of the method.

Keywords: Variational iteration method, boundary value problems, convergence, restricted variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
742 Is It Important to Measure the Volumetric Mass Density of Nanofluids?

Authors: Z. Haddad, C. Abid, O. Rahli, O. Margeat, W. Dachraoui, A. Mataoui

Abstract:

The present study aims to measure the volumetric mass density of NiPd-heptane nanofluids synthesized using a one step method known as thermal decomposition of metal-surfactant complexes. The particle concentration is up to 7.55g/l and the temperature range of the experiment is from 20°C to 50°C. The measured values were compared with the mixture theory and good agreement between the theoretical equation and measurement were obtained. Moreover, the available nanofluids volumetric mass density data in the literature is reviewed.

Keywords: NiPd nanoparticles, nanofluids, volumetric mass density, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
741 Estimation Model for Concrete Slump Recovery by Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

This paper aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%-1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameters, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Keywords: Estimation model, second superplasticizer dosage, slump loss, slump recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
740 Analysis of the Torque Required for Mixing LDPE with Natural Fibre and DCP

Authors: A. E. Delgado, W. Aperador

Abstract:

This study evaluated the incidence of concentrated natural fibre, as well as the effects of adding a crosslinking agent on the torque when those components are mixed with low density polyethylene (LDPE). The natural fibre has a particle size of between 0.8-1.2mm and a moisture content of 0.17%. An internal mixer was used to measure the torque required to mix the polymer with the fibre. The effect of the fibre content and crosslinking agent on the torque was also determined. A change was observed in the morphology of the mixes using SEM differential scanning microscopy.

Keywords: WPC, DCP, LDPE, natural fibre, torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
739 The Comparison of Some Soil Quality Indexes in Different Land uses of Ghareh Aghaj Watershed of Semirom, Isfahan, Iran

Authors: Bahareh Aghasi, Ahmad Jalalian, Naser Honarjoo

Abstract:

Land use change, if not based on proper scientific investigation affects other physical, chemical, and biological properties of soil and leading to increased destruction and erosion. It was imperative to study the effects of changing rangelands to farmlands on some Soil quality indexes. Undisturbed soil samples were collected from the depths of 0-10 and 10-30 centimeter in pasture with good vegetation cover(GP), pasture with medium vegetation cover(MP), abandoned dry land farming(ADF) and degraded dry land farming(DDF) land uses in Ghareh Aghaj watershed of Isfahan province. The results revealed that organic matter(OM), cation exchange capacity(CEC) and available potassium(AK) decreasing in the depth of 0-10 centimeter were 66.6, 38.8 and 70 percent and in the depth of 10-30 centimeter were 58, 61.4 and 83.5 percent respectively in DDF comparison with GP. Concerning to the results, it seems that land use change can decrease soil quality and increase soil degradation and lead in undesirable consequences.

Keywords: Land use change, Soil degradation, Soil quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
738 Hydrothermal Synthesis of ZnO/SnO2 Nanoparticles with High Photocatalytic Activity

Authors: Azam Anaraki Firooz, Ali Reza Mahjoub, Abbas Ali Khodadadi

Abstract:

The paper reports the preparation and photocatalytic activity of ZnO/SnO2 and SnO2 nanoparticles. These nanoparticles were synthesized by hydrothermal method. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their grain sizes are about 50-100 nm. The photocatalytic activities of these materials were investigated for congo red removal from aqueous solution under UV light irradiation. It was shown that the use of ZnO/SnO2 as photocatalyst have better photocatalytic activity for degradation of congo red than SnO2 or TiO2 (anatase, particle size: 30nm) alone.

Keywords: ZnO/SnO2 nanoparticle, hydrothermal, photocatalysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3432
737 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

Authors: Chaouki Ghenai

Abstract:

Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending palm kernel shell (PKS) with polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.

Keywords: CFD, Combustion, Emissions, Gas Turbine Combustor, Gasification, Solid Waste, Syngas and Waste to Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3627
736 Mathematical Modelling of Venturi Scrubber for Ammonia Absorption

Authors: S.Mousavian, D.Ashouri, M.abdolahi, M.H.Vakili, Y.Rahnama

Abstract:

In this study, the dispersed model is used to predict gas phase concentration, liquid drop concentration. The venturi scrubber efficiency is calculated by gas phase concentration. The modified model has been validated with available experimental data of Johnstone, Field and Tasler for a range of throat gas velocities, liquid to gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency.

Keywords: Ammonia, Modelling, Purge gas, Removal efficiency, Venturi scrubber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
735 Heat Transfer Analysis of a Multiphase Oxygen Reactor Heated by a Helical Tube in the Cu-Cl Cycle of a Hydrogen Production

Authors: Mohammed W. Abdulrahman

Abstract:

In the thermochemical water splitting process by Cu-Cl cycle, oxygen gas is produced by an endothermic thermolysis process at a temperature of 530oC. Oxygen production reactor is a three-phase reactor involving cuprous chloride molten salt, copper oxychloride solid reactant and oxygen gas. To perform optimal performance, the oxygen reactor requires accurate control of heat transfer to the molten salt and decomposing solid particles within the thermolysis reactor. In this paper, the scale up analysis of the oxygen reactor that is heated by an internal helical tube is performed from the perspective of heat transfer. A heat balance of the oxygen reactor is investigated to analyze the size of the reactor that provides the required heat input for different rates of hydrogen production. It is found that the helical tube wall and the service side constitute the largest thermal resistances of the oxygen reactor system. In the analysis of this paper, the Cu-Cl cycle is assumed to be heated by two types of nuclear reactor, which are HTGR and CANDU SCWR. It is concluded that using CANDU SCWR requires more heat transfer rate by 3-4 times than that when using HTGR. The effect of the reactor aspect ratio is also studied and it is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Comparisons between the results of this study and pervious results of material balances in the oxygen reactor show that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.

Keywords: Heat transfer, Cu-Cl cycle, hydrogen production, oxygen, clean energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
734 Solitons and Universes with Acceleration Driven by Bulk Particles

Authors: A. C. Amaro de Faria Jr, A. M. Canone

Abstract:

Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.

Keywords: Solitons, topological defects, Branes, kinks, accelerating universes in Brane scenarios.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
733 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams

Authors: Ruoyang Tang, Jianguo Nie

Abstract:

Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.

Keywords: Bracing member, construction stage, lateral-torsional buckling, steel girder system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
732 A Hybrid Method for Eyes Detection in Facial Images

Authors: Muhammad Shafi, Paul W. H. Chung

Abstract:

This paper proposes a hybrid method for eyes localization in facial images. The novelty is in combining techniques that utilise colour, edge and illumination cues to improve accuracy. The method is based on the observation that eye regions have dark colour, high density of edges and low illumination as compared to other parts of face. The first step in the method is to extract connected regions from facial images using colour, edge density and illumination cues separately. Some of the regions are then removed by applying rules that are based on the general geometry and shape of eyes. The remaining connected regions obtained through these three cues are then combined in a systematic way to enhance the identification of the candidate regions for the eyes. The geometry and shape based rules are then applied again to further remove the false eye regions. The proposed method was tested using images from the PICS facial images database. The proposed method has 93.7% and 87% accuracies for initial blobs extraction and final eye detection respectively.

Keywords: Erosion, dilation, Edge-density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
731 A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid

Authors: P.Kumar

Abstract:

Fluids are used for heat transfer in many engineering equipments. Water, ethylene glycol and propylene glycol are some of the common heat transfer fluids. Over the years, in an attempt to reduce the size of the equipment and/or efficiency of the process, various techniques have been employed to improve the heat transfer rate of these fluids. Surface modification, use of inserts and increased fluid velocity are some examples of heat transfer enhancement techniques. Addition of milli or micro sized particles to the heat transfer fluid is another way of improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. In this work, the heat transfer enhancement using aluminium oxide nanofluid has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach.

Keywords: Heat transfer intensification, nanofluid, CFD, friction factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3767