Search results for: Fuzzy logic system
8375 The Use of Dynamically Optimised High Frequency Moving Average Strategies for Intraday Trading
Authors: Abdalla Kablan, Joseph Falzon
Abstract:
This paper is motivated by the aspect of uncertainty in financial decision making, and how artificial intelligence and soft computing, with its uncertainty reducing aspects can be used for algorithmic trading applications that trade in high frequency. This paper presents an optimized high frequency trading system that has been combined with various moving averages to produce a hybrid system that outperforms trading systems that rely solely on moving averages. The paper optimizes an adaptive neuro-fuzzy inference system that takes both the price and its moving average as input, learns to predict price movements from training data consisting of intraday data, dynamically switches between the best performing moving averages, and performs decision making of when to buy or sell a certain currency in high frequency.Keywords: Financial decision making, High frequency trading, Adaprive neuro-fuzzy systems, moving average strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50728374 Fuzzy Control of a Three Phase ThyristorizedInduction Motor
Authors: Abolfazl Jalilvand, Mohammad Reza Feyzi, Sohrab Khanmohammad, Mohammad Bagher Bana Sharifian, Ali Sajjadi
Abstract:
Nowadays the control of stator voltage at a constant frequency is one of the traditional and low expense methods in order to control the speed of induction motors near its nominal speed. The torque of induction motor is a nonlinear function of the firing angle, phase angle and speed. In this paper the speed control of induction motor regarding various load torque and under different conditions will be investigated based on a fuzzy controller with inverse training.
Keywords: Three phase induction motor, AC converter, speedcontrol, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17978373 Reversible Binary Arithmetic for Integrated Circuit Design
Authors: D. Krishnaveni, M. Geetha Priya
Abstract:
Application of reversible logic in integrated circuits results in the improved optimization of power consumption. This technology can be put into use in a variety of low power applications such as quantum computing, optical computing, nano-technology, and Complementary Metal Oxide Semiconductor (CMOS) Very Large Scale Integrated (VLSI) design etc. Logic gates are the basic building blocks in the design of any logic network and thus integrated circuits. In this paper, reversible Dual Key Gate (DKG) and Dual key Gate Pair (DKGP) gates that work singly as full adder/full subtractor are used to realize the basic building blocks of logic circuits. Reversible full adder/subtractor and parallel adder/ subtractor are designed using other reversible gates available in the literature and compared with that of DKG & DKGP gates. Efficient performance of reversible logic circuits relies on the optimization of the key parameters viz number of constant inputs, garbage outputs and number of reversible gates. The full adder/subtractor and parallel adder/subtractor design with reversible DKGP and DKG gates results in least number of constant inputs, garbage outputs, and number of reversible gates compared to the other designs. Thus, this paper provides a threshold to build more complex arithmetic systems using these reversible logic gates, leading to the enhanced performance of computing systems.
Keywords: Low power CMOS, quantum computing, reversible logic gates, full adder, full subtractor, parallel adder/subtractor, basic gates, universal gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14378372 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15598371 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.
Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9308370 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16728369 Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques
Authors: M. S. Annie Christi
Abstract:
Transportation Problem (TP) is based on supply and demand of commodities transported from one source to the different destinations. Usual methods for finding solution of TPs are North-West Corner Rule, Least Cost Method Vogel’s Approximation Method etc. The transportation costs tend to vary at each time. We can use fuzzy numbers which would give solution according to this situation. In this study the Best Candidate Method (BCM) is applied. For ranking Centroid Ranking Technique (CRT) and Robust Ranking Technique have been adopted to transform the fuzzy TP and the above methods are applied to EDWARDS Vacuum Company, Crawley, in West Sussex in the United Kingdom. A Comparative study is also given. We see that the transportation cost can be minimized by the application of CRT under BCM.
Keywords: Best candidates method, centroid ranking technique, robust ranking technique, transportation problem, fuzzy transportation problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15738368 On the Noise Distance in Robust Fuzzy C-Means
Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni
Abstract:
In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18228367 Compact Binary Tree Representation of Logic Function with Enhanced Throughput
Authors: Padmanabhan Balasubramanian, C. Ardil
Abstract:
An effective approach for realizing the binary tree structure, representing a combinational logic functionality with enhanced throughput, is discussed in this paper. The optimization in maximum operating frequency was achieved through delay minimization, which in turn was possible by means of reducing the depth of the binary network. The proposed synthesis methodology has been validated by experimentation with FPGA as the target technology. Though our proposal is technology independent, yet the heuristic enables better optimization in throughput even after technology mapping for such Boolean functionality; whose reduced CNF form is associated with a lesser literal cost than its reduced DNF form at the Boolean equation level. For cases otherwise, our method converges to similar results as that of [12]. The practical results obtained for a variety of case studies demonstrate an improvement in the maximum throughput rate for Spartan IIE (XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA logic families by 10.49% and 13.68% respectively. With respect to the LUTs and IOBUFs required for physical implementation of the requisite non-regenerative logic functionality, the proposed method enabled savings to the tune of 44.35% and 44.67% respectively, over the existing efficient method available in literature [12].
Keywords: Binary logic tree, FPGA based design, Boolean function, Throughput rate, CNF, DNF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19088366 An Enhanced Associativity Based Routing with Fuzzy Based Trust to Mitigate Network Attacks
Authors: K. Geetha, P. Thangaraj
Abstract:
Mobile Ad Hoc Networks (MANETs) is a collection of mobile devices forming a communication network without infrastructure. MANET is vulnerable to security threats due to network’s limited security, dynamic topology, scalability and the lack of central management. The Quality of Service (QoS) routing in such networks is limited by network breakage caused by node mobility or nodes energy depletions. The impact of node mobility on trust establishment is considered and its use to propagate trust through a network is investigated in this paper. This work proposes an enhanced Associativity Based Routing (ABR) with Fuzzy based Trust (Fuzzy- ABR) routing protocol for MANET to improve QoS and to mitigate network attacks.Keywords: Mobile Ad hoc Networks (MANET), Associativity Based Routing (ABR), Fuzzy based Computed Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25548365 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.
Keywords: Concrete design code, anticipate method, artificial neural network, multi-variable regression, adaptive neuro fuzzy inference system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8178364 A Family of Entropies on Interval-valued Intuitionistic Fuzzy Sets and Their Applications in Multiple Attribute Decision Making
Abstract:
The entropy of intuitionistic fuzzy sets is used to indicate the degree of fuzziness of an interval-valued intuitionistic fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS. Firstly, we propose a family of entropies on IvIFS with a parameter λ ∈ [0, 1], which generalize two entropy measures defined independently by Zhang and Wei, for IvIFS, and then we prove that the new entropy is an increasing function with respect to the parameter λ. Furthermore, a new multiple attribute decision making (MADM) method using entropy-based attribute weights is proposed to deal with the decision making situations where the alternatives on attributes are expressed by IvIFS and the attribute weights information is unknown. Finally, a numerical example is given to illustrate the applications of the proposed method.
Keywords: Interval-valued intuitionistic fuzzy sets, intervalvalued intuitionistic fuzzy entropy, multiple attribute decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16478363 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs
Authors: G. C. Mahata, A. Goswami
Abstract:
This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.
Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18148362 Optimization of Fuzzy Cluster Nodes in Cellular Multimedia Networks
Authors: J. D. Mallapur, Supriya H., Santosh B. K., Tej H.
Abstract:
The cellular network is one of the emerging areas of communication, in which the mobile nodes act as member for one base station. The cluster based communication is now an emerging area of wireless cellular multimedia networks. The cluster renders fast communication and also a convenient way to work with connectivity. In our scheme we have proposed an optimization technique for the fuzzy cluster nodes, by categorizing the group members into three categories like long refreshable member, medium refreshable member and short refreshable member. By considering long refreshable nodes as static nodes, we compute the new membership values for the other nodes in the cluster. We compare their previous and present membership value with the threshold value to categorize them into three different members. By which, we optimize the nodes in the fuzzy clusters. The simulation results show that there is reduction in the cluster computational time and iterational time after optimization.Keywords: Clusters, fuzzy and optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15708361 Glass Bottle Inspector Based on Machine Vision
Authors: Huanjun Liu, Yaonan Wang, Feng Duan
Abstract:
This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%.Keywords: Intelligent Inspection, Support Vector Machines, Ensemble Methods, watershed transform, Wavelet Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38958360 The Application of Hybrid Orthonomal Bernstein and Block-Pulse Functions in Finding Numerical Solution of Fredholm Fuzzy Integral Equations
Authors: Mahmoud Zarrini, Sanaz Torkaman
Abstract:
In this paper, we have proposed a numerical method for solving fuzzy Fredholm integral equation of the second kind. In this method a combination of orthonormal Bernstein and Block-Pulse functions are used. In most cases, the proposed method leads to the exact solution. The advantages of this method are shown by an example and calculate the error analysis.
Keywords: Fuzzy Fredholm Integral Equation, Bernstein, Block-Pulse, Orthonormal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20298359 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm
Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19318358 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming
Authors: Abbas Al-Refaie
Abstract:
This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.
Keywords: Fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9018357 Multilevel Fuzzy Decision Support Model for China-s Urban Rail Transit Planning Schemes
Authors: Jin-Bao Zhao, Wei Deng
Abstract:
This paper aims at developing a multilevel fuzzy decision support model for urban rail transit planning schemes in China under the background that China is presently experiencing an unprecedented construction of urban rail transit. In this study, an appropriate model using multilevel fuzzy comprehensive evaluation method is developed. In the decision process, the followings are considered as the influential objectives: traveler attraction, environment protection, project feasibility and operation. In addition, consistent matrix analysis method is used to determine the weights between objectives and the weights between the objectives- sub-indictors, which reduces the work caused by repeated establishment of the decision matrix on the basis of ensuring the consistency of decision matrix. The application results show that multilevel fuzzy decision model can perfectly deal with the multivariable and multilevel decision process, which is particularly useful in the resolution of multilevel decision-making problem of urban rail transit planning schemes.Keywords: Urban rail transit, planning schemes, multilevel fuzzy decision support model, consistent matrix analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13198356 Identification of a PWA Model of a Batch Reactor for Model Predictive Control
Authors: Gorazd Karer, Igor Skrjanc, Borut Zupancic
Abstract:
The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introduce the PWA model. Next, we tackle the identification method. We treat the fuzzy clustering algorithm, deal with the projections of the fuzzy clusters into the input space of the PWA model and explain the estimation of the parameters of the PWA model by means of a modified least-squares method. Furthermore, we verify the usability of the proposed identification approach on a hybrid nonlinear batch reactor example. The result suggest that the batch reactor can be efficiently identified and thus formulated as a PWA model, which can eventually be used for model predictive control purposes.
Keywords: Batch reactor, fuzzy clustering, hybrid systems, identification, nonlinear systems, PWA systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21958355 Advanced Robust PDC Fuzzy Control of Nonlinear Systems
Authors: M. Polanský
Abstract:
This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.
Keywords: Robust control, optimal control, Takagi–Sugeno (TS) fuzzy models, linear matrix inequality (LMI), observer, Advanced Robust Parallel Distributed Compensation (ARPDC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15758354 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection
Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy
Abstract:
It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28618353 Optimal Aggregate Production Planning with Fuzzy Data
Authors: Wen-Lung Huang, Shih-Pin Chen
Abstract:
This paper investigates the optimization problem of multi-product aggregate production planning (APP) with fuzzy data. From a comprehensive viewpoint of conserving the fuzziness of input information, this paper proposes a method that can completely describe the membership function of the performance measure. The idea is based on the well-known Zadeh-s extension principle which plays an important role in fuzzy theory. In the proposed solution procedure, a pair of mathematical programs parameterized by possibility level a is formulated to calculate the bounds of the optimal performance measure at a . Then the membership function of the optimal performance measure is constructed by enumerating different values of a . Solutions obtained from the proposed method contain more information, and can offer more chance to achieve the feasible disaggregate plan. This is helpful to the decision-maker in practical applications.Keywords: fuzzy data, aggregate production planning, membership function, parametric programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17438352 Inverse Dynamic Active Ground Motion Acceleration Inputs Estimation of the Retaining Structure
Authors: Ming-Hui Lee, Iau-Teh Wang
Abstract:
The innovative fuzzy estimator is used to estimate the ground motion acceleration of the retaining structure in this study. The Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the fuzzy weighting recursive least square estimator to estimate the acceleration input over time. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function, the distinct levels of the measurement noise covariance and the initial process noise covariance. The availability and the precision of the proposed method proposed in this study can be verified by comparing the actual value and the one obtained by numerical simulation.Keywords: Earthquake, Fuzzy Estimator, Kalman Filter, Recursive Least Square Estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15478351 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis
Authors: Mandana Kariminejad, Ali Ghaffari
Abstract:
Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10848350 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment
Authors: Fares Innal, Yves Dutuit, Mourad Chebila
Abstract:
The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.
Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27798349 Retrieving Similar Segmented Objects Using Motion Descriptors
Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou
Abstract:
The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.
Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23028348 Sociological Impact on Education An Analytical Approach Through Artificial Neural network
Authors: P. R. Jayathilaka, K.L. Jayaratne, H.L. Premaratne
Abstract:
This research presented in this paper is an on-going project of an application of neural network and fuzzy models to evaluate the sociological factors which affect the educational performance of the students in Sri Lanka. One of its major goals is to prepare the grounds to device a counseling tool which helps these students for a better performance at their examinations, especially at their G.C.E O/L (General Certificate of Education-Ordinary Level) examination. Closely related sociological factors are collected as raw data and the noise of these data are filtered through the fuzzy interface and the supervised neural network is being utilized to recognize the performance patterns against the chosen social factors.Keywords: Education, Fuzzy, neural network, prediction, Sociology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16398347 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection
Authors: Jinming Ma, Tianbing Xia, Janusz R. Getta
Abstract:
This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.
Keywords: Mobile internet, advertisement, anti-fraud, fuzzy set theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5958346 A Model for Estimation of Efforts in Development of Software Systems
Authors: Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, Atul Bisht
Abstract:
Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model, GA Based Model, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227