Search results for: CRRM algorithms
811 Real-Time Digital Oscilloscope Implementation in 90nm CMOS Technology FPGA
Authors: Nasir Mehmood, Jens Ogniewski, Vinodh Ravinath
Abstract:
This paper describes the design of a real-time audiorange digital oscilloscope and its implementation in 90nm CMOS FPGA platform. The design consists of sample and hold circuits, A/D conversion, audio and video processing, on-chip RAM, clock generation and control logic. The design of internal blocks and modules in 90nm devices in an FPGA is elaborated. Also the key features and their implementation algorithms are presented. Finally, the timing waveforms and simulation results are put forward.Keywords: CMOS, VLSI, Oscilloscope, Field Programmable Gate Array (FPGA), VHDL, Video Graphics Array (VGA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083810 GA based Optimal Sizing and Placement of Distributed Generation for Loss Minimization
Authors: Deependra Singh, Devender Singh, K. S. Verma
Abstract:
This paper addresses a novel technique for placement of distributed generation (DG) in electric power systems. A GA based approach for sizing and placement of DG keeping in view of system power loss minimization in different loading conditions is explained. Minimal system power loss is obtained under voltage and line loading constraints. Proposed strategy is applied to power distribution systems and its effectiveness is verified through simulation results on 16, 37-bus and 75-bus test systems.
Keywords: Distributed generation (DG), Genetic algorithms (GA), optimal sizing and placement, Power loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468809 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique
Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan
Abstract:
In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.
Keywords: Brain balancing, kNN, power spectral density, 3D EEG model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628808 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm
Authors: S. Esfandeh, M. Sedighizadeh
Abstract:
Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.Keywords: Weather, Climate, PSO, Prediction, Meteorological
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076807 A Modified AES Based Algorithm for Image Encryption
Authors: M. Zeghid, M. Machhout, L. Khriji, A. Baganne, R. Tourki
Abstract:
With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm.Keywords: Cryptography, Encryption, Advanced EncryptionStandard (AES), ECB mode, statistical analysis, key streamgenerator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5058806 Metaheuristics Methods (GA and ACO) for Minimizing the Length of Freeman Chain Code from Handwritten Isolated Characters
Authors: Dewi Nasien, Habibollah Haron, Siti SophiayatiYuhaniz
Abstract:
This paper presents a comparison of metaheuristic algorithms, Genetic Algorithm (GA) and Ant Colony Optimization (ACO), in producing freeman chain code (FCC). The main problem in representing characters using FCC is the length of the FCC depends on the starting points. Isolated characters, especially the upper-case characters, usually have branches that make the traversing process difficult. The study in FCC construction using one continuous route has not been widely explored. This is our motivation to use the population-based metaheuristics. The experimental result shows that the route length using GA is better than ACO, however, ACO is better in computation time than GA.Keywords: Handwriting Recognition, Feature Extraction, Freeman Chain Code, Genetic Algorithm and Ant ColonyOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059805 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection
Authors: Taiwo. M. Akinmuyisitan, John Cosmas
Abstract:
This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.
Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284804 Multimodal Biometric Authentication Using Choquet Integral and Genetic Algorithm
Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara
Abstract:
The Choquet integral is a tool for the information fusion that is very effective in the case where fuzzy measures associated with it are well chosen. In this paper, we propose a new approach for calculating fuzzy measures associated with the Choquet integral in a context of data fusion in multimodal biometrics. The proposed approach is based on genetic algorithms. It has been validated in two databases: the first base is relative to synthetic scores and the second one is biometrically relating to the face, fingerprint and palmprint. The results achieved attest the robustness of the proposed approach.
Keywords: Multimodal biometrics, data fusion, Choquet integral, fuzzy measures, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516803 The Locker Problem with Empty Lockers
Authors: David Avis, Luc Devroye, Kazuo Iwama
Abstract:
We consider a cooperative game played by n players against a referee. The players names are randomly distributed among n lockers, with one name per locker. Each player can open up to half the lockers and each player must find his name. Once the game starts the players may not communicate. It has been previously shown that, quite surprisingly, an optimal strategy exists for which the success probability is never worse than 1 − ln 2 ≈ 0.306. In this paper we consider an extension where the number of lockers is greater than the number of players, so that some lockers are empty. We show that the players may still win with positive probability even if there are a constant k number of empty lockers. We show that for each fixed probability p, there is a constant c so that the players can win with probability at least p if they are allowed to open cn lockers.
Keywords: Locker problem, pointer-following algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293802 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images
Authors: Mario Mastriani
Abstract:
This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735801 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277800 A New Scheduling Algorithm Based on Traffic Classification Using Imprecise Computation
Authors: Farzad Abtahi, Sahar Khanmohamadi, Bahram Sadeghi Bigham
Abstract:
Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms have been proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the difference of traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may be incurred for real-time flows. In this paper, it is proposed a scheduling algorithm that takes traffic types of flows into consideration when scheduling packets and also it is provided scheduling flexibility by trading off video quality to meet the playback deadline.Keywords: Data communication, Real-time, Scheduling, Video transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474799 MovieReco: A Recommendation System
Authors: Dipankaj G Medhi, Juri Dakua
Abstract:
Recommender Systems act as personalized decision guides, aiding users in decisions on matters related to personal taste. Most previous research on Recommender Systems has focused on the statistical accuracy of the algorithms driving the systems, with no emphasis on the trustworthiness of the user. RS depends on information provided by different users to gather its knowledge. We believe, if a large group of users provide wrong information it will not be possible for the RS to arrive in an accurate conclusion. The system described in this paper introduce the concept of Testing the knowledge of user to filter out these “bad users". This paper emphasizes on the mechanism used to provide robust and effective recommendation.Keywords: Collaborative Filtering, Content Based Filtering, Intelligent Agent, Level of Interest, Recommendation System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645798 Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel
Authors: A. Abedian, M. H. Ghiasi, B. Dehghan-Manshadi
Abstract:
A stiffened laminated composite panel (1 m length × 0.5m width) was optimized for minimum weight and deflection under several constraints using genetic algorithm. Here, a significant study on the performance of a penalty function with two kinds of static and dynamic penalty factors was conducted. The results have shown that linear dynamic penalty factors are more effective than the static ones. Also, a specially combined linear-exponential function has shown to perform more effective than the previously mentioned penalty functions. This was then resulted in the less sensitivity of the GA to the amount of penalty factor.Keywords: Genetic algorithms, penalty function, stiffenedcomposite panel, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678797 Design and Implementation of an Image Based System to Enhance the Security of ATM
Authors: Seyed Nima Tayarani Bathaie
Abstract:
In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.
Keywords: Face detection algorithm, Haar features, Security of ATM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109796 Selection of Relevant Servers in Distributed Information Retrieval System
Authors: Benhamouda Sara, Guezouli Larbi
Abstract:
Nowadays, the dissemination of information touches the distributed world, where selecting the relevant servers to a user request is an important problem in distributed information retrieval. During the last decade, several research studies on this issue have been launched to find optimal solutions and many approaches of collection selection have been proposed. In this paper, we propose a new collection selection approach that takes into consideration the number of documents in a collection that contains terms of the query and the weights of those terms in these documents. We tested our method and our studies show that this technique can compete with other state-of-the-art algorithms that we choose to test the performance of our approach.
Keywords: Distributed information retrieval, relevance, server selection, collection selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378795 Intelligent Aid-Analysis Based on the Use of Digital Twin: Application to Electronic Warfare System
Authors: L. Chaussy, M. Nouvel
Abstract:
Workload of the system engineers during Integration Validation Verification process of Electronic Warfare Systems (EWS) is growing with complexity of the systems and with the diversity of tested cases (diversity of operational scenario in front of EWS). Even if the use of Digital Twin makes easier conception and development phases in term of planning and test equipment availability, time to analyze tests results is still too long and too complex. The idea to reduce the system engineer’s workload and improve test coverage is to introduce some intelligent and aid-analysis algorithms to improve this step.
Keywords: Analysis tools, automatic testing, digital twin, electronic warfare system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386794 A Simulation Software for DNA Computing Algorithms Implementation
Authors: M. S. Muhammad, S. M. W. Masra, K. Kipli, N. Zamhari
Abstract:
The capturing of gel electrophoresis image represents the output of a DNA computing algorithm. Before this image is being captured, DNA computing involves parallel overlap assembly (POA) and polymerase chain reaction (PCR) that is the main of this computing algorithm. However, the design of the DNA oligonucleotides to represent a problem is quite complicated and is prone to errors. In order to reduce these errors during the design stage before the actual in-vitro experiment is carried out; a simulation software capable of simulating the POA and PCR processes is developed. This simulation software capability is unlimited where problem of any size and complexity can be simulated, thus saving cost due to possible errors during the design process. Information regarding the DNA sequence during the computing process as well as the computing output can be extracted at the same time using the simulation software.Keywords: DNA computing, PCR, POA, simulation software
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815793 Practical Aspects of Face Recognition
Authors: S. Vural, H. Yamauchi
Abstract:
Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598792 A Hybrid Feature Subset Selection Approach based on SVM and Binary ACO. Application to Industrial Diagnosis
Authors: O. Kadri, M. D. Mouss, L.H. Mouss, F. Merah
Abstract:
This paper proposes a novel hybrid algorithm for feature selection based on a binary ant colony and SVM. The final subset selection is attained through the elimination of the features that produce noise or, are strictly correlated with other already selected features. Our algorithm can improve classification accuracy with a small and appropriate feature subset. Proposed algorithm is easily implemented and because of use of a simple filter in that, its computational complexity is very low. The performance of the proposed algorithm is evaluated through a real Rotary Cement kiln dataset. The results show that our algorithm outperforms existing algorithms.
Keywords: Binary Ant Colony algorithm, Support VectorMachine, feature selection, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608791 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection
Authors: P. Bountris, E. Farantatos, N. Apostolou
Abstract:
Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433790 Mining News Sites to Create Special Domain News Collections
Authors: David B. Bracewell, Fuji Ren, Shingo Kuroiwa
Abstract:
We present a method to create special domain collections from news sites. The method only requires a single sample article as a seed. No prior corpus statistics are needed and the method is applicable to multiple languages. We examine various similarity measures and the creation of document collections for English and Japanese. The main contributions are as follows. First, the algorithm can build special domain collections from as little as one sample document. Second, unlike other algorithms it does not require a second “general" corpus to compute statistics. Third, in our testing the algorithm outperformed others in creating collections made up of highly relevant articles.Keywords: Information Retrieval, News, Special DomainCollections,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488789 Exploring Counting Methods for the Vertices of Certain Polyhedra with Uncertainties
Authors: Sammani Danwawu Abdullahi
Abstract:
Vertex Enumeration Algorithms explore the methods and procedures of generating the vertices of general polyhedra formed by system of equations or inequalities. These problems of enumerating the extreme points (vertices) of general polyhedra are shown to be NP-Hard. This lead to exploring how to count the vertices of general polyhedra without listing them. This is also shown to be #P-Complete. Some fully polynomial randomized approximation schemes (fpras) of counting the vertices of some special classes of polyhedra associated with Down-Sets, Independent Sets, 2-Knapsack problems and 2 x n transportation problems are presented together with some discovered open problems.Keywords: Approximation, counting with uncertainties, mathematical programming, optimization, vertex enumeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361788 Comprehensive Analysis of Data Mining Tools
Authors: S. Sarumathi, N. Shanthi
Abstract:
Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.
Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439787 Iterative Clustering Algorithm for Analyzing Temporal Patterns of Gene Expression
Authors: Seo Young Kim, Jae Won Lee, Jong Sung Bae
Abstract:
Microarray experiments are information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. For biologists, a key aim when analyzing microarray data is to group genes based on the temporal patterns of their expression levels. In this paper, we used an iterative clustering method to find temporal patterns of gene expression. We evaluated the performance of this method by applying it to real sporulation data and simulated data. The patterns obtained using the iterative clustering were found to be superior to those obtained using existing clustering algorithms.Keywords: Clustering, microarray experiment, temporal pattern of gene expression data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355786 Energy Efficient Resource Allocation in Distributed Computing Systems
Authors: Samee Ullah Khan, C. Ardil
Abstract:
The problem of mapping tasks onto a computational grid with the aim to minimize the power consumption and the makespan subject to the constraints of deadlines and architectural requirements is considered in this paper. To solve this problem, we propose a solution from cooperative game theory based on the concept of Nash Bargaining Solution. The proposed game theoretical technique is compared against several traditional techniques. The experimental results show that when the deadline constraints are tight, the proposed technique achieves superior performance and reports competitive performance relative to the optimal solution.Keywords: Energy efficient algorithms, resource allocation, resource management, cooperative game theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790785 A High Bitrate Information Hiding Algorithm for Video in Video
Authors: Wang Shou-Dao, Xiao Chuang-Bai, Lin Yu
Abstract:
In high bitrate information hiding techniques, 1 bit is embedded within each 4 x 4 Discrete Cosine Transform (DCT) coefficient block by means of vector quantization, then the hidden bit can be effectively extracted in terminal end. In this paper high bitrate information hiding algorithms are summarized, and the scheme of video in video is implemented. Experimental result shows that the host video which is embedded numerous auxiliary information have little visually quality decline. Peak Signal to Noise Ratio (PSNR)Y of host video only degrades 0.22dB in average, while the hidden information has a high percentage of survives and keeps a high robustness in H.264/AVC compression, the average Bit Error Rate(BER) of hiding information is 0.015%.Keywords: Information Hiding, Embed, Quantification, Extract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899784 Visual Search Based Indoor Localization in Low Light via RGB-D Camera
Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng
Abstract:
Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.Keywords: Indoor navigation, low light, RGB-D camera, vision based.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676783 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization
Authors: S. G. Ponnambalam, Low Seng Kiat
Abstract:
In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.Keywords: Machine loading problem, FMS, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121782 Elimination of Redundant Links in Web Pages– Mathematical Approach
Authors: G. Poonkuzhali, K.Thiagarajan, K.Sarukesi
Abstract:
With the enormous growth on the web, users get easily lost in the rich hyper structure. Thus developing user friendly and automated tools for providing relevant information without any redundant links to the users to cater to their needs is the primary task for the website owners. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent one that are likely to contain the outlying data such as noise, irrelevant and redundant data. This paper proposes new algorithm for mining the web content by detecting the redundant links from the web documents using set theoretical(classical mathematics) such as subset, union, intersection etc,. Then the redundant links is removed from the original web content to get the required information by the user..Keywords: Web documents, Web content mining, redundantlink, outliers, set theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015