Search results for: counting with uncertainties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 217

Search results for: counting with uncertainties

217 Exploring Counting Methods for the Vertices of Certain Polyhedra with Uncertainties

Authors: Sammani Danwawu Abdullahi

Abstract:

Vertex Enumeration Algorithms explore the methods and procedures of generating the vertices of general polyhedra formed by system of equations or inequalities. These problems of enumerating the extreme points (vertices) of general polyhedra are shown to be NP-Hard. This lead to exploring how to count the vertices of general polyhedra without listing them. This is also shown to be #P-Complete. Some fully polynomial randomized approximation schemes (fpras) of counting the vertices of some special classes of polyhedra associated with Down-Sets, Independent Sets, 2-Knapsack problems and 2 x n transportation problems are presented together with some discovered open problems.

Keywords: Approximation, counting with uncertainties, mathematical programming, optimization, vertex enumeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
216 People Counting in Transport Vehicles

Authors: Sebastien Harasse, Laurent Bonnaud, Michel Desvignes

Abstract:

Counting people from a video stream in a noisy environment is a challenging task. This project aims at developing a counting system for transport vehicles, integrated in a video surveillance product. This article presents a method for the detection and tracking of multiple faces in a video by using a model of first and second order local moments. An iterative process is used to estimate the position and shape of multiple faces in images, and to track them. the trajectories are then processed to count people entering and leaving the vehicle.

Keywords: face detection, tracking, counting, local statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
215 A New Automatic System of Cell Colony Counting

Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva

Abstract:

The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.

Keywords: Automatic cell counting, neural network, region growing, Sanger net.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
214 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line

Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh

Abstract:

Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.

Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
213 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

Authors: Liming Zhang

Abstract:

This paper introduces a new instantaneous frequency computation approach  -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of  -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So  -Counting instantaneous frequency can be used together with empirical mode decomposition.

Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
212 Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

Authors: Ganesh Kothapalli, Mohammed Y. Hassan

Abstract:

The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator-s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters.

Keywords: excavator, fuzzy control, hydraulics, mining, type-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
211 Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference

Authors: Amir Azizi, Amir Yazid B. Ali, Loh Wei Ping

Abstract:

Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today-s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%.

Keywords: Bayesian inference, Uncertainty modeling, Monte Carlo Markov chain, Gibbs sampling, Production throughput

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
210 A New Approach for Counting Passersby Utilizing Space-Time Images

Authors: A. Elmarhomy, S. Karungaru, K. Terada

Abstract:

Understanding the number of people and the flow of the persons is useful for efficient promotion of the institution managements and company-s sales improvements. This paper introduces an automated method for counting passerby using virtualvertical measurement lines. The process of recognizing a passerby is carried out using an image sequence obtained from the USB camera. Space-time image is representing the human regions which are treated using the segmentation process. To handle the problem of mismatching, different color space are used to perform the template matching which chose automatically the best matching to determine passerby direction and speed. A relation between passerby speed and the human-pixel area is used to distinguish one or two passersby. In the experiment, the camera is fixed at the entrance door of the hall in a side viewing position. Finally, experimental results verify the effectiveness of the presented method by correctly detecting and successfully counting them in order to direction with accuracy of 97%.

Keywords: counting passersby, virtual-vertical measurement line, passerby speed, space-time image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
209 Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology

Authors: Balasundaram Prasaant, Ploix Stephane, Delinchant Benoit, Muresan Cristian

Abstract:

Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis.

Keywords: Energy in Buildings, Hardware in Loop, Modelica (Dymola), Monte Carlo Simulation, Uncertainty Propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
208 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: Intelligent transportation systems, object detection, video processing, road traffic, vehicle counting, vehicle classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
207 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties

Authors: Riku Hayashida, Tomoaki Hashimoto

Abstract:

This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: Robust control, stabilization method, underwater robot, parameter uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
206 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: Agricultural object detection, Deep learning, machine vision, YOLO family.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
205 Computing Fractal Dimension of Signals using Multiresolution Box-counting Method

Authors: B. S. Raghavendra, D. Narayana Dutt

Abstract:

In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In addition, some properties of the FD are discussed.

Keywords: Box-counting, Fractal dimension, Higuchi method, Katz method, Parametric fractal signals, Sevcik method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4538
204 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties

Authors: Alia Abdul Ghaffar, Tom Richardson

Abstract:

A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive controller, unlike the fixed gain controller, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture can result in an enhanced tracking performance in the presence parametric uncertainties.

Keywords: UAV, quadrotor, model reference adaptive control, LQR control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5477
203 Box Counting Dimension of the Union L of Trinomial Curves When α ≥ 1

Authors: Kaoutar Lamrini Uahabi, Mohamed Atounti

Abstract:

In the present work, we consider one category of curves denoted by L(p, k, r, n). These curves are continuous arcs which are trajectories of roots of the trinomial equation zn = αzk + (1 − α), where z is a complex number, n and k are two integers such that 1 ≤ k ≤ n − 1 and α is a real parameter greater than 1. Denoting by L the union of all trinomial curves L(p, k, r, n) and using the box counting dimension as fractal dimension, we will prove that the dimension of L is equal to 3/2.

Keywords: Feasible angles, fractal dimension, Minkowski sausage, trinomial curves, trinomial equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
202 Underlying Cognitive Complexity Measure Computation with Combinatorial Rules

Authors: Benjapol Auprasert, Yachai Limpiyakorn

Abstract:

Measuring the complexity of software has been an insoluble problem in software engineering. Complexity measures can be used to predict critical information about testability, reliability, and maintainability of software systems from automatic analysis of the source code. During the past few years, many complexity measures have been invented based on the emerging Cognitive Informatics discipline. These software complexity measures, including cognitive functional size, lend themselves to the approach of the total cognitive weights of basic control structures such as loops and branches. This paper shows that the current existing calculation method can generate different results that are algebraically equivalence. However, analysis of the combinatorial meanings of this calculation method shows significant flaw of the measure, which also explains why it does not satisfy Weyuker's properties. Based on the findings, improvement directions, such as measures fusion, and cumulative variable counting scheme are suggested to enhance the effectiveness of cognitive complexity measures.

Keywords: Cognitive Complexity Measure, Cognitive Weight of Basic Control Structure, Counting Rules, Cumulative Variable Counting Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
201 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
200 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System

Authors: M. Ahmadnezhad, M. Soltanpour

Abstract:

Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.

Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
199 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a Nonlinear Electrohydraulic Servo System

Authors: M. Ahmadnezhad, M. Soltanpour

Abstract:

Electrohydraulic servo system have been used in industry in a wide number of applications. Its dynamics are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this paper, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of disturbances and system uncertainties effectively and to improve the tracking performance of EHS systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the Lyapunov control function (LCF). To verify the performance and robustness of the proposed control system, computer simulation of the proposed control system using Matlab/Simulink Software is executed. From the computer simulation, it was found that the RBSC system produces the desired tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.

Keywords: Electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
198 Evaluation of Transfer Capability Considering Uncertainties of System Operating Condition and System Cascading Collapse

Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan

Abstract:

Over the past few decades, power system industry in many developing and developed countries has gone through a restructuring process of the industry where they are moving towards deregulated power industry. This situation will lead to competition among the generation and distribution companies to provide quality and efficient production of electric energy, which will reduce the price of electricity. Therefore it is important to obtain an accurate value of the available transfer capability (ATC) and transmission reliability margin (TRM) in order to ensure the effective power transfer between areas during the occurrence of uncertainties in the system. In this paper, the TRM and ATC is determined by taking into consideration the uncertainties of the system operating condition and system cascading collapse by applying the bootstrap technique. A case study of the IEEE RTS-79 is employed to verify the robustness of the technique proposed in the determination of TRM and ATC.

Keywords: Available transfer capability, bootstrap technique, cascading collapse, transmission reliability margin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
197 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures

Authors: J. Menčík

Abstract:

Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.

Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
196 A Fiber Optic Interferometric Sensor for Dynamic Measurement

Authors: N. Sathitanon, S. Pullteap

Abstract:

An optical fiber Fabry-Perot interferometer (FFPI) is proposed and demonstrated for dynamic measurements in a mechanical vibrating target. A polishing metal with a low reflectance value adhered to a mechanical vibrator was excited via a function generator at various excitation frequencies. Output interference fringes were generated by modulating the reference and sensing signal at the output arm. A fringe-counting technique was used for interpreting the displacement information on the dedicated computer. The fiber interferometer has been found the capability of the displacement measurements of 1.28 μm – 96.01 μm. A commercial displacement sensor was employed as a reference sensor for investigating the measurement errors from the fiber sensor. A maximum percentage measurement error of approximately 1.59 % was obtained.

Keywords: Optical fiber sensors, dynamic displacement, fringe counting, reference displacement sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
195 Improving Order Quantity Model with Emergency Safety Stock (ESS)

Authors: Yousef Abu Nahleh, Alhasan Hakami, Arun Kumar, Fugen Daver

Abstract:

This study considers the problem of calculating safety stocks in disaster situations inventory systems that face demand uncertainties. Safety stocks are essential to make the supply chain, which is controlled by forecasts of customer needs, in response to demand uncertainties and to reach predefined goal service levels. To solve the problem of uncertainties due to the disaster situations affecting the industry sector, the concept of Emergency Safety Stock (ESS) was proposed. While there exists a huge body of literature on determining safety stock levels, this literature does not address the problem arising due to the disaster and dealing with the situations. In this paper, the problem of improving the Order Quantity Model to deal with uncertainty of demand due to disasters is managed by incorporating a new idea called ESS which is based on the probability of disaster occurrence and uses probability matrix calculated from the historical data. 

Keywords: Emergency Safety Stocks, Safety stocks, Order Quantity Model, Supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819
194 Socio-Spatial Resilience Strategic Planning Through Understanding Strategic Perspectives on Tehran and Bath

Authors: Aynaz Lotfata

Abstract:

Planning community has been long discussing emerging paradigms within the planning theory in the face of the changing conditions of the world order. The paradigm shift concept was introduced by Thomas Kuhn, in 1960, who claimed the necessity of shifting within scientific knowledge boundaries; and following him in 1970 Imre Loktas also gave priority to the emergence of multi-paradigm societies [24]. Multi-paradigm is changing our predetermined lifeworld through uncertainties. Those uncertainties are reflected in two sides, the first one is uncertainty as a concept of possibility and creativity in public sphere and the second one is uncertainty as a risk. Therefore, it is necessary to apply a resilience planning approach to be more dynamic in controlling uncertainties which have the potential to transfigure present time and space definitions. In this way, stability of system can be achieved. Uncertainty is not only an outcome of worldwide changes but also a place-specific issue, i.e. it changes from continent to continent, a country to country; a region to region. Therefore, applying strategic spatial planning with respect to resilience principle contributes to: control, grasp and internalize uncertainties through place-specific strategies. In today-s fast changing world, planning system should follow strategic spatial projects to control multi-paradigm societies with adaptability capacities. Here, we have selected two alternatives to demonstrate; these are; 1.Tehran (Iran) from the Middle East 2.Bath (United Kingdom) from Europe. The study elaborates uncertainties and particularities in their strategic spatial planning processes in a comparative manner. Through the comparison, the study aims at assessing place-specific priorities in strategic planning. The approach is to a two-way stream, where the case cities from the extreme end of the spectrum can learn from each other. The structure of this paper is to firstly compare semi-periphery (Tehran) and coreperiphery (Bath) cities, with the focus to reveal how they equip to face with uncertainties according to their geographical locations and local particularities. Secondly, the key message to address is “Each locality requires its own strategic planning approach to be resilient.--

Keywords: Adaptation, Relational Network, Socio-Spatial Strategic Resiliency, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
193 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a  priori information of the uncertainties is not available. For such  systems, we assume that the upper bound of the uncertainties is  represented as a Fredholm integral equation of the first kind and we  propose an adaptation law that is capable of estimating the upper  bound and design a continuous robust control which renders nonlinear  uncertain systems ultimately bounded.

 

Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
192 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making

Authors: Jadwiga R. Ziolkowska

Abstract:

In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.

Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
191 Tracking Activity of Real Individuals in Web Logs

Authors: Sándor Juhász, Renáta Iváncsy

Abstract:

This paper describes an enhanced cookie-based method for counting the visitors of web sites by using a web log processing system that aims to cope with the ambitious goal of creating countrywide statistics about the browsing practices of real human individuals. The focus is put on describing a new more efficient way of detecting human beings behind web users by placing different identifiers on the client computers. We briefly introduce our processing system designed to handle the massive amount of data records continuously gathered from the most important content providers of the Hungary. We conclude by showing statistics of different time spans comparing the efficiency of multiple visitor counting methods to the one presented here, and some interesting charts about content providers and web usage based on real data recorded in 2007 will also be presented.

Keywords: Cookie based identification, real data, user activitytracking, web auditing, web log processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
190 White Blood Cells Identification and Counting from Microscopic Blood Image

Authors: Lorenzo Putzu, Cecilia Di Ruberto

Abstract:

The counting and analysis of blood cells allows the evaluation and diagnosis of a vast number of diseases. In particular, the analysis of white blood cells (WBCs) is a topic of great interest to hematologists. Nowadays the morphological analysis of blood cells is performed manually by skilled operators. This involves numerous drawbacks, such as slowness of the analysis and a nonstandard accuracy, dependent on the operator skills. In literature there are only few examples of automated systems in order to analyze the white blood cells, most of which only partial. This paper presents a complete and fully automatic method for white blood cells identification from microscopic images. The proposed method firstly individuates white blood cells from which, subsequently, nucleus and cytoplasm are extracted. The whole work has been developed using MATLAB environment, in particular the Image Processing Toolbox.

Keywords: Automatic detection, Biomedical image processing, Segmentation, White blood cell analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8825
189 Fractal Analysis on Human Colonic Pressure Activities based on the Box-counting Method

Authors: Rongguo Yan, Guozheng Yan, Banghua Yang

Abstract:

The colonic tissue is a complicated dynamic system and the colonic activities it generates are composed of irregular segmental waves, which are referred to as erratic fluctuations or spikes. They are also highly irregular with subunit fractal structure. The traditional time-frequency domain statistics like the averaged amplitude, the motility index and the power spectrum, etc. are insufficient to describe such fluctuations. Thus the fractal box-counting dimension is proposed and the fractal scaling behaviors of the human colonic pressure activities under the physiological conditions are studied. It is shown that the dimension of the resting activity is smaller than that of the normal one, whereas the clipped version, which corresponds to the activity of the constipation patient, shows with higher fractal dimension. It may indicate a practical application to assess the colonic motility, which is often indicated by the colonic pressure activity.

Keywords: Colonic pressure activity, erratic fluctuations, fractal dimension and spikes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
188 Exponential Stability Analysis for Switched Cellular Neural Networks with Time-varying Delays and Impulsive Effects

Authors: Zixin Liu, Fangwei Chen

Abstract:

In this Letter, a class of impulsive switched cellular neural networks with time-varying delays is investigated. At the same time, parametric uncertainties assumed to be norm bounded are considered. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions guaranteeing exponential stability for all admissible parametric uncertainties are derived via constructing appropriate Lyapunov functional. One numerical example is provided to illustrate the validity of the main results obtained in this paper.

Keywords: Switched systems, exponential stability, cellular neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374