Search results for: Automatic XML Schema Matching.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 975

Search results for: Automatic XML Schema Matching.

285 New Technologies for Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R.Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Keywords: multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
284 Numerical Modeling of Gas Turbine Engines

Authors: A. Pashayev, D. Askerov, C. Ardil, R. Sadiqov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
283 GA Based Optimal Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
282 A Model-Driven Approach of User Interface for MVP Rich Internet Application

Authors: Sarra Roubi, Mohammed Erramdani, Samir Mbarki

Abstract:

This paper presents an approach for the model-driven generating of Rich Internet Application (RIA) focusing on the graphical aspect. We used well known Model-Driven Engineering (MDE) frameworks and technologies, such as Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF), Query View Transformation (QVTo) and Acceleo to enable the design and the code automatic generation of the RIA. During the development of the approach, we focused on the graphical aspect of the application in terms of interfaces while opting for the Model View Presenter pattern that is designed for graphics interfaces. The paper describes the process followed to define the approach, the supporting tool and presents the results from a case study.

Keywords: Code generation, Design Pattern, metamodel, Model Driven Engineering, MVP, Rich Internet Application, transformation, User Interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
281 Face Localization and Recognition in Varied Expressions and Illumination

Authors: Hui-Yu Huang, Shih-Hang Hsu

Abstract:

In this paper, we propose a robust scheme to work face alignment and recognition under various influences. For face representation, illumination influence and variable expressions are the important factors, especially the accuracy of facial localization and face recognition. In order to solve those of factors, we propose a robust approach to overcome these problems. This approach consists of two phases. One phase is preprocessed for face images by means of the proposed illumination normalization method. The location of facial features can fit more efficient and fast based on the proposed image blending. On the other hand, based on template matching, we further improve the active shape models (called as IASM) to locate the face shape more precise which can gain the recognized rate in the next phase. The other phase is to process feature extraction by using principal component analysis and face recognition by using support vector machine classifiers. The results show that this proposed method can obtain good facial localization and face recognition with varied illumination and local distortion.

Keywords: Gabor filter, improved active shape model (IASM), principal component analysis (PCA), face alignment, face recognition, support vector machine (SVM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
280 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation

Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan

Abstract:

Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.

Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
279 Wood Species Recognition System

Authors: Bremananth R, Nithya B, Saipriya R

Abstract:

The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.

Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
278 Analysis of Blind Decision Feedback Equalizer Convergence: Interest of a Soft Decision

Authors: S. Cherif, S. Marcos, M. Jaidane

Abstract:

In this paper the behavior of the decision feedback equalizers (DFEs) adapted by the decision-directed or the constant modulus blind algorithms is presented. An analysis of the error surface of the corresponding criterion cost functions is first developed. With the intention of avoiding the ill-convergence of the algorithm, the paper proposes to modify the shape of the cost function error surface by using a soft decision instead of the hard one. This was shown to reduce the influence of false decisions and to smooth the undesirable minima. Modified algorithms using the soft decision during a pseudo-training phase with an automatic switch to the properly tracking phase are then derived. Computer simulations show that these modified algorithms present better ability to avoid local minima than conventional ones.

Keywords: Blind DFEs, decision-directed algorithm, constant modulus algorithm, cost function analysis, convergence analysis, soft decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
277 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Based on the DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit (SOMP) algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low Signal-to-Noise Ratio (SNR) stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
276 Graphical Password Security Evaluation by Fuzzy AHP

Authors: Arash Habibi Lashkari, Azizah Abdul Manaf, Maslin Masrom

Abstract:

In today's day and age, one of the important topics in information security is authentication. There are several alternatives to text-based authentication of which includes Graphical Password (GP) or Graphical User Authentication (GUA). These methods stems from the fact that humans recognized and remembers images better than alphanumerical text characters. This paper will focus on the security aspect of GP algorithms and what most researchers have been working on trying to define these security features and attributes. The goal of this study is to develop a fuzzy decision model that allows automatic selection of available GP algorithms by taking into considerations the subjective judgments of the decision makers who are more than 50 postgraduate students of computer science. The approach that is being proposed is based on the Fuzzy Analytic Hierarchy Process (FAHP) which determines the criteria weight as a linear formula.

Keywords: Graphical Password, Authentication Security, Attack Patterns, Brute force attack, Dictionary attack, Guessing Attack, Spyware attack, Shoulder surfing attack, Social engineering Attack, Password Entropy, Password Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
275 Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules

Authors: Min Kyu Kim, Eun Young Lee, Dong Woo Son, Yoon Seok Chang

Abstract:

In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience.

Keywords: Automation, box erecting machine, dispatching rule, setup time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
274 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
273 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
272 Analysis of Feature Space for a 2d/3d Vision based Emotion Recognition Method

Authors: Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

In modern human computer interaction systems (HCI), emotion recognition is becoming an imperative characteristic. The quest for effective and reliable emotion recognition in HCI has resulted in a need for better face detection, feature extraction and classification. In this paper we present results of feature space analysis after briefly explaining our fully automatic vision based emotion recognition method. We demonstrate the compactness of the feature space and show how the 2d/3d based method achieves superior features for the purpose of emotion classification. Also it is exposed that through feature normalization a widely person independent feature space is created. As a consequence, the classifier architecture has only a minor influence on the classification result. This is particularly elucidated with the help of confusion matrices. For this purpose advanced classification algorithms, such as Support Vector Machines and Artificial Neural Networks are employed, as well as the simple k- Nearest Neighbor classifier.

Keywords: Facial expression analysis, Feature extraction, Image processing, Pattern Recognition, Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
271 Cursive Handwriting in an Internet Age

Authors: Karen Armstrong

Abstract:

Recent concerns about the value of teaching cursive handwriting in the classroom are based on the belief that cursive handwriting or penmanship is an outdated and unnecessary skill in today’s online world. The discussion of this issue begins with a description of current initiatives to eliminate handwriting instruction in schools. This is followed by a brief history of cursive writing through the ages. Next considered is a description of its benefits as a preliminary process for younger children as compared with immediate instruction in keyboarding, particularly in the areas of vision, cognition, motor skills and automatic fluency. Also considered, is cursive’s companion, paper itself, and the impact of a paperless, “screen and keyboard” environment. The discussion concludes with a consideration of the unique contributions of cursive and keyboarding as written forms of communication, along with their respective surfaces, paper and screen. Finally, an assessment of the practical utility of each skill is followed by an informal assessment of what is lost and what remains as we move from a predominantly paper and pen world of handwriting to texting and keyboarding in an environment of screens.

Keywords: Asemic writing, cursive, handwriting, keyboarding, paper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5512
270 Automatic Rearrangement of Localized Graphical User Interface

Authors: Ágoston Winkler, Sándor Juhász

Abstract:

The localization of software products is essential for reaching the users of the international market. An important task for this is the translation of the user interface into local national languages. As graphical interfaces are usually optimized for the size of the texts in the original language, after the translation certain user controls (e.g. text labels and buttons in dialogs) may grow in such a manner that they slip above each other. This not only causes an unpleasant appearance but also makes the use of the program more difficult (or even impossible) which implies that the arrangement of the controls must be corrected subsequently. The correction should preserve the original structure of the interface (e.g. the relation of logically coherent controls), furthermore, it is important to keep the nicely proportioned design: the formation of large empty areas should be avoided. This paper describes an algorithm that automatically rearranges the controls of a graphical user interface based on the principles above. The algorithm has been implemented and integrated into a translation support system and reached results pleasant for the human eye in most test cases.

Keywords: Graphical user interface, GUI, natural languages, software localization, translation support systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
269 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques

Authors: Chinlun Lai, Lunjyh Jiang

Abstract:

Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.

Keywords: Baby care system, internet of things, deep learning, machine vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
268 Semi-automatic Background Detection in Microscopic Images

Authors: Alessandro Bevilacqua, Alessandro Gherardi, Ludovico Carozza, Filippo Piccinini

Abstract:

The last years have seen an increasing use of image analysis techniques in the field of biomedical imaging, in particular in microscopic imaging. The basic step for most of the image analysis techniques relies on a background image free of objects of interest, whether they are cells or histological samples, to perform further analysis, such as segmentation or mosaicing. Commonly, this image consists of an empty field acquired in advance. However, many times achieving an empty field could not be feasible. Or else, this could be different from the background region of the sample really being studied, because of the interaction with the organic matter. At last, it could be expensive, for instance in case of live cell analyses. We propose a non parametric and general purpose approach where the background is built automatically stemming from a sequence of images containing even objects of interest. The amount of area, in each image, free of objects just affects the overall speed to obtain the background. Experiments with different kinds of microscopic images prove the effectiveness of our approach.

Keywords: Microscopy, flat field correction, background estimation, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
267 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
266 An Approach to Polynomial Curve Comparison in Geometric Object Database

Authors: Chanon Aphirukmatakun, Natasha Dejdumrong

Abstract:

In image processing and visualization, comparing two bitmapped images needs to be compared from their pixels by matching pixel-by-pixel. Consequently, it takes a lot of computational time while the comparison of two vector-based images is significantly faster. Sometimes these raster graphics images can be approximately converted into the vector-based images by various techniques. After conversion, the problem of comparing two raster graphics images can be reduced to the problem of comparing vector graphics images. Hence, the problem of comparing pixel-by-pixel can be reduced to the problem of polynomial comparisons. In computer aided geometric design (CAGD), the vector graphics images are the composition of curves and surfaces. Curves are defined by a sequence of control points and their polynomials. In this paper, the control points will be considerably used to compare curves. The same curves after relocated or rotated are treated to be equivalent while two curves after different scaled are considered to be similar curves. This paper proposed an algorithm for comparing the polynomial curves by using the control points for equivalence and similarity. In addition, the geometric object-oriented database used to keep the curve information has also been defined in XML format for further used in curve comparisons.

Keywords: Bezier curve, Said-Ball curve, Wang-Ball curve, DP curve, CAGD, comparison, geometric object database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
265 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking

Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko

Abstract:

A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.

Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
264 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
263 Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis

Authors: Perminder JitKaur, Santosh Satya, K. K. Pant, S. N. Naik

Abstract:

Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neemoil (25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results from compressive strength analysis using HEICO Automatic Compression Testing Machine reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable.

Keywords: Compressive strength, D. strictus bamboo, Ecofriendly treatment, neem oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3445
262 Comparison of Hough Transform and Mean Shift Algorithm for Estimation of the Orientation Angle of Industrial Data Matrix Codes

Authors: Ion-Cosmin Dita, Vasile Gui, Franz Quint, Marius Otesteanu

Abstract:

In automatic manufacturing and assembling of mechanical, electrical and electronic parts one needs to reliably identify the position of components and to extract the information of these components. Data Matrix Codes (DMC) are established by these days in many areas of industrial manufacturing thanks to their concentration of information on small spaces. In today’s usually order-related industry, where increased tracing requirements prevail, they offer further advantages over other identification systems. This underlines in an impressive way the necessity of a robust code reading system for detecting DMC on the components in factories. This paper compares two methods for estimating the angle of orientation of Data Matrix Codes: one method based on the Hough Transform and the other based on the Mean Shift Algorithm. We concentrate on Data Matrix Codes in industrial environment, punched, milled, lasered or etched on different materials in arbitrary orientation.

Keywords: Industrial data matrix code, Hough transform, mean shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
261 Design of Real Time Early Response Systems for Natural Disaster Management Based On Automation and Control Technologies

Authors: C. Pacheco, A. Cipriano

Abstract:

A new concept of response system is proposed for filling the gap that exists in reducing vulnerability during immediate response to natural disasters. Real Time Early Response Systems (RTERSs) incorporate real time information as feedback data for closing control loop and for generating real time situation assessment. A review of the state of the art on works that fit the concept of RTERS is presented, and it is found that they are mainly focused on manmade disasters. At the same time, in response phase of natural disaster management many works are involved in creating early warning systems, but just few efforts have been put on deciding what to do once an alarm is activated. In this context a RTERS arises as a useful tool for supporting people in their decision making process during natural disasters after an event is detected, and also as an innovative context for applying well-known automation technologies and automatic control concepts and tools.

Keywords: Disaster management, emergency response system, natural disasters, real time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3582
260 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
259 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data

Authors: Chi-Lun Liu

Abstract:

Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.

Keywords: Knowledge representation, reasoning, ontology, class diagram, software engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042
258 Management and Control of Industrial Effluents Discharged to Public Sewers: A Case Study

Authors: Freeman Ntuli

Abstract:

An overview of the important aspects of managing and controlling industrial effluent discharges to public sewers namely sampling, characterization, quantification and legislative controls has been presented. The findings have been validated by means of a case study covering three industrial sectors namely, tanning, textile finishing and food processing industries. Industrial effluents discharges were found to be best monitored by systematic and automatic sampling and quantified using water meter readings corrected for evaporative and consumptive losses. Based on the treatment processes employed in the public owned treatment works and the chemical oxygen demand and biochemical oxygen demand levels obtained, the effluent from all the three industrial sectors studied were found to lie in the toxic zone. Thus, physico-chemical treatment of these effluents is required to bring them into the biodegradable zone. KL values (quoted to base e) were greater than 0.50 day-1 compared to 0.39 day-1 for typical municipality wastewater.

Keywords: biodegradability, industrial effluent, pollution control, public sewers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177
257 Incorporating Semantic Similarity Measure in Genetic Algorithm : An Approach for Searching the Gene Ontology Terms

Authors: Razib M. Othman, Safaai Deris, Rosli M. Illias, Hany T. Alashwal, Rohayanti Hassan, FarhanMohamed

Abstract:

The most important property of the Gene Ontology is the terms. These control vocabularies are defined to provide consistent descriptions of gene products that are shareable and computationally accessible by humans, software agent, or other machine-readable meta-data. Each term is associated with information such as definition, synonyms, database references, amino acid sequences, and relationships to other terms. This information has made the Gene Ontology broadly applied in microarray and proteomic analysis. However, the process of searching the terms is still carried out using traditional approach which is based on keyword matching. The weaknesses of this approach are: ignoring semantic relationships between terms, and highly depending on a specialist to find similar terms. Therefore, this study combines semantic similarity measure and genetic algorithm to perform a better retrieval process for searching semantically similar terms. The semantic similarity measure is used to compute similitude strength between two terms. Then, the genetic algorithm is employed to perform batch retrievals and to handle the situation of the large search space of the Gene Ontology graph. The computational results are presented to show the effectiveness of the proposed algorithm.

Keywords: Gene Ontology, Semantic similarity measure, Genetic algorithm, Ontology search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
256 Early Requirement Engineering for Design of Learner Centric Dynamic LMS

Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta

Abstract:

We present a modeling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modeling tool and Means End Analysis, that adopts primitive concepts for modeling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.

Keywords: Adaptive Courseware, Early Requirement Engineering, Means End Analysis, Organizational Modeling, Requirement Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648