Search results for: web data regions
7329 Application of Multi-Dimensional Principal Component Analysis to Medical Data
Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida
Abstract:
Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25027328 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.
Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17367327 Dynamic Data Partition Algorithm for a Parallel H.264 Encoder
Authors: Juntae Kim, Jaeyoung Park, Kyoungkun Lee, Jong Tae Kim
Abstract:
The H.264/AVC standard is a highly efficient video codec providing high-quality videos at low bit-rates. As employing advanced techniques, the computational complexity has been increased. The complexity brings about the major problem in the implementation of a real-time encoder and decoder. Parallelism is the one of approaches which can be implemented by multi-core system. We analyze macroblock-level parallelism which ensures the same bit rate with high concurrency of processors. In order to reduce the encoding time, dynamic data partition based on macroblock region is proposed. The data partition has the advantages in load balancing and data communication overhead. Using the data partition, the encoder obtains more than 3.59x speed-up on a four-processor system. This work can be applied to other multimedia processing applications.Keywords: H.264/AVC, video coding, thread-level parallelism, OpenMP, multimedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17957326 A Sociolinguistic Study of the Outcomes of Arabic-French Contact in the Algerian Dialect Tlemcen Speech Community as a Case Study
Authors: R. Rahmoun-Mrabet
Abstract:
It is acknowledged that our style of speaking changes according to a wide range of variables such as gender, setting, the age of both the addresser and the addressee, the conversation topic, and the aim of the interaction. These differences in style are noticeable in monolingual and multilingual speech communities. Yet, they are more observable in speech communities where two or more codes coexist. The linguistic situation in Algeria reflects a state of bilingualism because of the coexistence of Arabic and French. Nevertheless, like all Arab countries, it is characterized by diglossia i.e. the concomitance of Modern Standard Arabic (MSA) and Algerian Arabic (AA), the former standing for the ‘high variety’ and the latter for the ‘low variety’. The two varieties are derived from the same source but are used to fulfil distinct functions that is, MSA is used in the domains of religion, literature, education and formal settings. AA, on the other hand, is used in informal settings, in everyday speech. French has strongly affected the Algerian language and culture because of the historical background of Algeria, thus, what can easily be noticed in Algeria is that everyday speech is characterized by code-switching from dialectal Arabic and French or by the use of borrowings. Tamazight is also very present in many regions of Algeria and is the mother tongue of many Algerians. Yet, it is not used in the west of Algeria, where the study has been conducted. The present work, which was directed in the speech community of Tlemcen-Algeria, aims at depicting some of the outcomes of the contact of Arabic with French such as code-switching, borrowing and interference. The question that has been asked is whether Algerians are aware of their use of borrowings or not. Three steps are followed in this research; the first one is to depict the sociolinguistic situation in Algeria and to describe the linguistic characteristics of the dialect of Tlemcen, which are specific to this city. The second one is concerned with data collection. Data have been collected from 57 informants who were given questionnaires and who have then been classified according to their age, gender and level of education. Information has also been collected through observation, and note taking. The third step is devoted to analysis. The results obtained reveal that most Algerians are aware of their use of borrowings. The present work clarifies how words are borrowed from French, and then adapted to Arabic. It also illustrates the way in which singular words inflect into plural. The results expose the main characteristics of borrowing as opposed to code-switching. The study also clarifies how interference occurs at the level of nouns, verbs and adjectives.
Keywords: Bilingualism, borrowing, code-switching, interference, language contact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9497325 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which cover the variety of figure proportions in both height and girth. 3,000 data have been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from the some states of India to produce the sizing system suitable for clothing manufacture and retailing. The data are used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from the large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: Anthropometric data, data mining, decision tree, garments manufacturing, ready-made garments, sizing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9617324 XML Schema Automatic Matching Solution
Authors: Huynh Quyet Thang, Vo Sy Nam
Abstract:
Schema matching plays a key role in many different applications, such as schema integration, data integration, data warehousing, data transformation, E-commerce, peer-to-peer data management, ontology matching and integration, semantic Web, semantic query processing, etc. Manual matching is expensive and error-prone, so it is therefore important to develop techniques to automate the schema matching process. In this paper, we present a solution for XML schema automated matching problem which produces semantic mappings between corresponding schema elements of given source and target schemas. This solution contributed in solving more comprehensively and efficiently XML schema automated matching problem. Our solution based on combining linguistic similarity, data type compatibility and structural similarity of XML schema elements. After describing our solution, we present experimental results that demonstrate the effectiveness of this approach.Keywords: XML Schema, Schema Matching, SemanticMatching, Automatic XML Schema Matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18317323 Information Theoretical Analysis of Neural Spiking Activity with Temperature Modulation
Authors: Young-Seok Choi
Abstract:
This work assesses the cortical and the sub-cortical neural activity recorded from rodents using entropy and mutual information based approaches to study how hypothermia affects neural activity. By applying the multi-scale entropy and Shannon entropy, we quantify the degree of the regularity embedded in the cortical and sub-cortical neurons and characterize the dependency of entropy of these regions on temperature. We study also the degree of the mutual information on thalamocortical pathway depending on temperature. The latter is most likely an indicator of coupling between these highly connected structures in response to temperature manipulation leading to arousal after global cerebral ischemia.Keywords: Spiking activity, entropy, mutual information, temperature modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16257322 Data Oriented Model of Image: as a Framework for Image Processing
Authors: A. Habibizad Navin, A. Sadighi, M. Naghian Fesharaki, M. Mirnia, M. Teshnelab, R. Keshmiri
Abstract:
This paper presents a new data oriented model of image. Then a representation of it, ADBT, is introduced. The ability of ADBT is clustering, segmentation, measuring similarity of images etc, with desired precision and corresponding speed.
Keywords: Data oriented modelling, image, clustering, segmentation, classification, ADBT and image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17997321 MIBiClus: Mutual Information based Biclustering Algorithm
Authors: Neelima Gupta, Seema Aggarwal
Abstract:
Most of the biclustering/projected clustering algorithms are based either on the Euclidean distance or correlation coefficient which capture only linear relationships. However, in many applications, like gene expression data and word-document data, non linear relationships may exist between the objects. Mutual Information between two variables provides a more general criterion to investigate dependencies amongst variables. In this paper, we improve upon our previous algorithm that uses mutual information for biclustering in terms of computation time and also the type of clusters identified. The algorithm is able to find biclusters with mixed relationships and is faster than the previous one. To the best of our knowledge, none of the other existing algorithms for biclustering have used mutual information as a similarity measure. We present the experimental results on synthetic data as well as on the yeast expression data. Biclusters on the yeast data were found to be biologically and statistically significant using GO Tool Box and FuncAssociate.
Keywords: Biclustering, mutual information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16317320 Data Extraction of XML Files using Searching and Indexing Techniques
Authors: Sushma Satpute, Vaishali Katkar, Nilesh Sahare
Abstract:
XML files contain data which is in well formatted manner. By studying the format or semantics of the grammar it will be helpful for fast retrieval of the data. There are many algorithms which describes about searching the data from XML files. There are no. of approaches which uses data structure or are related to the contents of the document. In these cases user must know about the structure of the document and information retrieval techniques using NLPs is related to content of the document. Hence the result may be irrelevant or not so successful and may take more time to search.. This paper presents fast XML retrieval techniques by using new indexing technique and the concept of RXML. When indexing an XML document, the system takes into account both the document content and the document structure and assigns the value to each tag from file. To query the system, a user is not constrained about fixed format of query.
Keywords: XML Retrieval, Indexed Search, Information Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17837319 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Türkiye
Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa
Abstract:
Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Such cracks and breaks can cause significant damage to people and the environment, including the risk of explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has sustained more damage in those quake-affected regions. It has been determined that earthquakes in Türkiye have caused permanent damage to pipelines. This project was initiated in response to the identification of cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, a SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and overall sustainability in the industry.
Keywords: Earthquake, natural gas pipes, oil pipes, voltage measurement, landslide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117318 GeNS: a Biological Data Integration Platform
Authors: Joel Arrais, João E. Pereira, João Fernandes, José Luís Oliveira
Abstract:
The scientific achievements coming from molecular biology depend greatly on the capability of computational applications to analyze the laboratorial results. A comprehensive analysis of an experiment requires typically the simultaneous study of the obtained dataset with data that is available in several distinct public databases. Nevertheless, developing a centralized access to these distributed databases rises up a set of challenges such as: what is the best integration strategy, how to solve nomenclature clashes, how to solve database overlapping data and how to deal with huge datasets. In this paper we present GeNS, a system that uses a simple and yet innovative approach to address several biological data integration issues. Compared with existing systems, the main advantages of GeNS are related to its maintenance simplicity and to its coverage and scalability, in terms of number of supported databases and data types. To support our claims we present the current use of GeNS in two concrete applications. GeNS currently contains more than 140 million of biological relations and it can be publicly downloaded or remotely access through SOAP web services.Keywords: Data integration, biological databases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16327317 Comparison Analysis of the Wald-s and the Bayes Type Sequential Methods for Testing Hypotheses
Authors: K. J. Kachiashvili
Abstract:
The Comparison analysis of the Wald-s and Bayestype sequential methods for testing hypotheses is offered. The merits of the new sequential test are: universality which consists in optimality (with given criteria) and uniformity of decision-making regions for any number of hypotheses; simplicity, convenience and uniformity of the algorithms of their realization; reliability of the obtained results and an opportunity of providing the errors probabilities of desirable values. There are given the Computation results of concrete examples which confirm the above-stated characteristics of the new method and characterize the considered methods in regard to each other.
Keywords: Errors of types I and II, likelihood ratio, the Bayes Type Sequential test, the Wald's sequential test, averaged number of observations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17177316 A Modified Run Length Coding Technique for Test Data Compression Based on Multi-Level Selective Huffman Coding
Authors: C. Kalamani, K. Paramasivam
Abstract:
Test data compression is an efficient method for reducing the test application cost. The problem of reducing test data has been addressed by researchers in three different aspects: Test Data Compression, Built-in-Self-Test (BIST) and Test set compaction. The latter two methods are capable of enhancing fault coverage with cost of hardware overhead. The drawback of the conventional methods is that they are capable of reducing the test storage and test power but when test data have redundant length of runs, no additional compression method is followed. This paper presents a modified Run Length Coding (RLC) technique with Multilevel Selective Huffman Coding (MLSHC) technique to reduce test data volume, test pattern delivery time and power dissipation in scan test applications where redundant length of runs is encountered then the preceding run symbol is replaced with tiny codeword. Experimental results show that the presented method not only improves the test data compression but also reduces the overall test data volume compared to recent schemes. Experiments for the six largest ISCAS-98 benchmarks show that our method outperforms most known techniques.
Keywords: Modified run length coding, multilevel selective Huffman coding, built-in-self-test modified selective Huffman coding, automatic test equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12747315 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks
Authors: Mohamed Watfa, William Daher, Hisham Al Azar
Abstract:
The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17967314 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.
Keywords: Classification, fuzzy logic, tolerance relations, rainfall data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10267313 Granularity Analysis for Spatio-Temporal Web Sensors
Authors: Shun Hattori
Abstract:
In recent years, many researches to mine the exploding Web world, especially User Generated Content (UGC) such as weblogs, for knowledge about various phenomena and events in the physical world have been done actively, and also Web services with the Web-mined knowledge have begun to be developed for the public. However, there are few detailed investigations on how accurately Web-mined data reflect physical-world data. It must be problematic to idolatrously utilize the Web-mined data in public Web services without ensuring their accuracy sufficiently. Therefore, this paper introduces the simplest Web Sensor and spatiotemporallynormalized Web Sensor to extract spatiotemporal data about a target phenomenon from weblogs searched by keyword(s) representing the target phenomenon, and tries to validate the potential and reliability of the Web-sensed spatiotemporal data by four kinds of granularity analyses of coefficient correlation with temperature, rainfall, snowfall, and earthquake statistics per day by region of Japan Meteorological Agency as physical-world data: spatial granularity (region-s population density), temporal granularity (time period, e.g., per day vs. per week), representation granularity (e.g., “rain" vs. “heavy rain"), and media granularity (weblogs vs. microblogs such as Tweets).Keywords: Granularity analysis, knowledge extraction, spatiotemporal data mining, Web credibility, Web mining, Web sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18827312 Non-negative Principal Component Analysis for Face Recognition
Abstract:
Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16957311 Concurrent Approach to Data Parallel Model using Java
Authors: Bala Dhandayuthapani Veerasamy
Abstract:
Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20977310 Adjusted Ratio and Regression Type Estimators for Estimation of Population Mean when some Observations are missing
Authors: Nuanpan Nangsue
Abstract:
Ratio and regression type estimators have been used by previous authors to estimate a population mean for the principal variable from samples in which both auxiliary x and principal y variable data are available. However, missing data are a common problem in statistical analyses with real data. Ratio and regression type estimators have also been used for imputing values of missing y data. In this paper, six new ratio and regression type estimators are proposed for imputing values for any missing y data and estimating a population mean for y from samples with missing x and/or y data. A simulation study has been conducted to compare the six ratio and regression type estimators with a previous estimator of Rueda. Two population sizes N = 1,000 and 5,000 have been considered with sample sizes of 10% and 30% and with correlation coefficients between population variables X and Y of 0.5 and 0.8. In the simulations, 10 and 40 percent of sample y values and 10 and 40 percent of sample x values were randomly designated as missing. The new ratio and regression type estimators give similar mean absolute percentage errors that are smaller than the Rueda estimator for all cases. The new estimators give a large reduction in errors for the case of 40% missing y values and sampling fraction of 30%.
Keywords: Auxiliary variable, missing data, ratio and regression type estimators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17327309 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15777308 Important Factors for Successful Solution of Emotional Situations: Empirical Study on Young People
Authors: R. Lekaviciene, D. Antiniene
Abstract:
Attempts to split the construct of emotional intelligence (EI) into separate components – ability to understand own and others’ emotions and ability to control own and others’ emotions may be meaningful more theoretically than practically. In real life, a personality encounters various emotional situations that require exhibition of complex EI to solve them. Emotional situation solution tests enable measurement of such undivided EI. The object of the present study is to determine sociodemographic and other factors that are important for emotional situation solutions. The study involved 1,430 participants from various regions of Lithuania. The age of participants varied from 17 years to 27 years. Emotional social and interpersonal situation scale EI-DARL-V2 was used. Each situation had two mandatory answering formats: The first format contained assignments associated with hypothetical theoretical knowledge of how the situation should be solved, while the second format included the question of how the participant would personally resolve the given situation in reality. A questionnaire that contained various sociodemographic data of subjects was also presented. Factors, statistically significant for emotional situation solution, have been determined: gender, family structure, the subject’s relation with his or her mother, mother’s occupation, subjectively assessed financial situation of the family, level of education of the subjects and his or her parents, academic achievement, etc. The best solvers of emotional situations are women with high academic achievements. According to their chosen study profile/acquired profession, they are related to the fields in social sciences and humanities. The worst solvers of emotional situations are men raised in foster homes. They are/were bad students and mostly choose blue-collar professions.
Keywords: Emotional intelligence, emotional situations, solution of situation, young people.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8947307 Software Test Data Generation using Ant Colony Optimization
Authors: Huaizhong Li, C.Peng Lam
Abstract:
State-based testing is frequently used in software testing. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve required test coverage. This paper proposes an Ant Colony Optimization approach to test data generation for the state-based software testing.
Keywords: Software testing, ant colony optimization, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34597306 Printed Arabic Sub-Word Recognition Using Moments
Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh
Abstract:
the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15657305 Natural Language News Generation from Big Data
Authors: Bastian Haarmann, Lukas Sikorski
Abstract:
In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The resulting fully automatic generated news stories have a high resemblance to the style in which the human writer would draw up such a story. Topics include soccer games, stock exchange market reports, and weather forecasts. Each generated text is unique. Readyto-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save timeconsuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.
Keywords: Big data, natural language generation, publishing, robotic journalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16877304 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process
Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek
Abstract:
It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.
Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23977303 A New Model for Discovering XML Association Rules from XML Documents
Authors: R. AliMohammadzadeh, M. Rahgozar, A. Zarnani
Abstract:
The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.Keywords: XML, Data Mining, Association Rule Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16317302 Modelling Silica Optical Fibre Reliability: A Software Application
Authors: I. Severin, M. Caramihai, R. El Abdi, M. Poulain, A. Avadanii
Abstract:
In order to assess optical fiber reliability in different environmental and stress conditions series of testing are performed simulating overlapping of chemical and mechanical controlled varying factors. Each series of testing may be compared using statistical processing: i.e. Weibull plots. Due to the numerous data to treat, a software application has appeared useful to interpret selected series of experiments in function of envisaged factors. The current paper presents a software application used in the storage, modelling and interpretation of experimental data gathered from optical fibre testing. The present paper strictly deals with the software part of the project (regarding the modelling, storage and processing of user supplied data).
Keywords: Optical fibres, computer aided analysis, data models, data processing, graphical user interfaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18237301 Multi-Focus Image Fusion Using SFM and Wavelet Packet
Authors: Somkait Udomhunsakul
Abstract:
In this paper, a multi-focus image fusion method using Spatial Frequency Measurements (SFM) and Wavelet Packet was proposed. The proposed fusion approach, firstly, the two fused images were transformed and decomposed into sixteen subbands using Wavelet packet. Next, each subband was partitioned into sub-blocks and each block was identified the clearer regions by using the Spatial Frequency Measurement (SFM). Finally, the recovered fused image was reconstructed by performing the Inverse Wavelet Transform. From the experimental results, it was found that the proposed method outperformed the traditional SFM based methods in terms of objective and subjective assessments.
Keywords: Multi-focus image fusion, Wavelet Packet, Spatial Frequency Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16147300 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represent another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.
Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852