Search results for: real-coded genetic algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3635

Search results for: real-coded genetic algorithm.

2975 Genetic Polymorphism of Main Lactoproteins of Romanian Grey Steppe Breed in Preservation

Authors: Şt. Creangâ, V. Maciuc, A.V. Bâlteanu, S.S. Chelmu

Abstract:

The paper presents a part of the results obtained in a complex research project on Romanian Grey Steppe breed, owner of some remarkable qualities such as hardiness, longevity, adaptability, special resistance to ban weather and diseases and included in the genetic fund (G.D. no. 822/2008.) from Romania. Following the researches effectuated, we identified alleles of six loci, codifying the six types of major milk proteins: alpha-casein S1 (α S1-cz); beta-casein (β-cz); kappa-casein (K-cz); beta-lactoglobulin (β-lg); alpha-lactalbumin (α-la) and alpha-casein S2 (α S2-cz). In system αS1-cz allele αs1-Cn B has the highest frequency (0.700), in system β-cz allele β-Cn A2 ( 0.550 ), in system K-cz allele k-CnA2 ( 0.583 ) and heterozygote genotype AB ( 0.416 ) and BB (0.375), in system β-lg allele β-lgA1 has the highest frequency (0.542 ) and heterozygote genotype AB ( 0.500 ), in system α-la there is monomorphism for allele α-la B and similarly in system αS2-cz for allele αs2-Cn A. The milk analysis by the isoelectric focalization technique (I.E.F.) allowed the identification of a new allele for locus αS1-casein, for two of the individuals under analysis, namely allele called αS1-casein IRV. When experiments were repeated, we noticed that this is not a proteolysis band and it really was a new allele that has not been registered in the specialized literature so far. We identified two heterozygote individuals, carriers of this allele, namely: BIRV and CIRV. This discovery is extremely important if focus is laid on the national genetic patrimony.

Keywords: allele, breed, genetic preservation, lactoproteins, Romanian Grey Steppe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
2974 Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm

Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag

Abstract:

This paper presents a new approach for the prob-ability density function estimation using the Support Vector Ma-chines (SVM) and the Expectation Maximization (EM) algorithms.In the proposed approach, an advanced algorithm for the SVM den-sity estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the para-meters of the kernel function which is used by the SVM algorithm,the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.

Keywords: Density Estimation, SVM, Learning Algorithms, Parameters Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
2973 Evolutionary Design of Polynomial Controller

Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka

Abstract:

In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.

Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
2972 Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex

Authors: A. Rattanapittayapron, O. Vanijajiva

Abstract:

Canna indica is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present, C. indica complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of C. indica complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since Canna flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives.

Keywords: Canna indica, antioxidant activity, genetic diversity, SRAP, iPBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376
2971 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2970 All-Pairs Shortest-Paths Problem for Unweighted Graphs in O(n2 log n) Time

Authors: Udaya Kumar Reddy K. R, K. Viswanathan Iyer

Abstract:

Given a simple connected unweighted undirected graph G = (V (G), E(G)) with |V (G)| = n and |E(G)| = m, we present a new algorithm for the all-pairs shortest-path (APSP) problem. The running time of our algorithm is in O(n2 log n). This bound is an improvement over previous best known O(n2.376) time bound of Raimund Seidel (1995) for general graphs. The algorithm presented does not rely on fast matrix multiplication. Our algorithm with slight modifications, enables us to compute the APSP problem for unweighted directed graph in time O(n2 log n), improving a previous best known O(n2.575) time bound of Uri Zwick (2002).

Keywords: Distance in graphs, Dynamic programming, Graphalgorithms, Shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3690
2969 Considering Assembly Operations and Product Structure for Manufacturing Cell Formation

Authors: M.B. Aryanezhad, J. Aliabadi

Abstract:

This paper considers the integration of assembly operations and product structure to Cellular Manufacturing System (CMS) design so that to correct the drawbacks of previous researches in the literature. For this purpose, a new mathematical model is developed which dedicates machining and assembly operations to manufacturing cells while the objective function is to minimize the intercellular movements resulting due to both of them. A linearization method is applied to achieve optimum solution through solving aforementioned nonlinear model by common programming language such as Lingo. Then, using different examples and comparing the results, the importance of integrating assembly considerations is demonstrated.

Keywords: Assembly operations and Product structure, CellFormation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
2968 Robust Probabilistic Online Change Detection Algorithm Based On the Continuous Wavelet Transform

Authors: Sergei Yendiyarov, Sergei Petrushenko

Abstract:

In this article we present a change point detection algorithm based on the continuous wavelet transform. At the beginning of the article we describe a necessary transformation of a signal which has to be made for the purpose of change detection. Then case study related to iron ore sinter production which can be solved using our proposed technique is discussed. After that we describe a probabilistic algorithm which can be used to find changes using our transformed signal. It is shown that our algorithm works well with the presence of some noise and abnormal random bursts.

Keywords: Change detection, sinter production, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
2967 Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid

Authors: Minh Vuong Pham, Frédéric Plourde, Son Doan Kim

Abstract:

A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.

Keywords: Strip-decomposition, parallelization, fast directpoisson solver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
2966 A Study on the Location and Range of Obstacle Region in Robot's Point Placement Task based on the Vision Control Algorithm

Authors: Jae Kyung Son, Wan Shik Jang, Sung hyun Shim, Yoon Gyung Sung

Abstract:

This paper is concerned with the application of the vision control algorithm for robot's point placement task in discontinuous trajectory caused by obstacle. The presented vision control algorithm consists of four models, which are the robot kinematic model, vision system model, parameters estimation model, and robot joint angle estimation model.When the robot moves toward a target along discontinuous trajectory, several types of obstacles appear in two obstacle regions. Then, this study is to investigate how these changes will affect the presented vision control algorithm.Thus, the practicality of the vision control algorithm is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

Keywords: Vision control algorithm, location of obstacle region, range of obstacle region, point placement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
2965 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: Modeling, algorithm, regulation, glucose-insulin, blood, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
2964 Application of Whole Genome Amplification Technique for Genotype Analysis of Bovine Embryos

Authors: S. Moghaddaszadeh-Ahrabi, S. Farajnia, Gh. Rahimi-Mianji, A. Nejati-Javaremi

Abstract:

In recent years, there has been an increasing interest toward the use of bovine genotyped embryos for commercial embryo transfer programs. Biopsy of a few cells in morulla stage is essential for preimplantation genetic diagnosis (PGD). Low amount of DNA have limited performing the several molecular analyses within PGD analyses. Whole genome amplification (WGA) promises to eliminate this problem. We evaluated the possibility and performance of an improved primer extension preamplification (I-PEP) method with a range of starting bovine genomic DNA from 1-8 cells into the WGA reaction. We optimized a short and simple I-PEP (ssI-PEP) procedure (~3h). This optimized WGA method was assessed by 6 loci specific polymerase chain reactions (PCRs), included restriction fragments length polymorphism (RFLP). Optimized WGA procedure possesses enough sensitivity for molecular genetic analyses through the few input cells. This is a new era for generating characterized bovine embryos in preimplantation stage.

Keywords: Whole genome amplification (WGA), Genotyping, Bovine, Preimplantation genetic diagnosis (PGD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
2963 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3910
2962 Perturbation Based Search Method for Solving Unconstrained Binary Quadratic Programming Problem

Authors: Muthu Solayappan, Kien Ming Ng, Kim Leng Poh

Abstract:

This paper presents a perturbation based search method to solve the unconstrained binary quadratic programming problem. The proposed algorithm was tested with some of the standard test problems and the results are reported for 10 instances of 50, 100, 250, & 500 variable problems. A comparison of the performance of the proposed algorithm with other heuristics and optimization software is made. Based on the results, it was found that the proposed algorithm is computationally inexpensive and the solutions obtained match the best known solutions for smaller sized problems. For larger instances, the algorithm is capable of finding a solution within 0.11% of the best known solution. Apart from being used as a stand-alone method, this algorithm could also be incorporated with other heuristics to find better solutions.

Keywords: unconstrained binary quadratic programming, perturbation, interior point methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
2961 Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots

Authors: Meng Wu

Abstract:

Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.

Keywords: Motion planning, gravity gradient inversion algorithm, ant colony optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
2960 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Influence and influence diffusion have been studied extensively in social networks. However, most existing literature on this task are limited on static networks, ignoring the fact that the interactions between users change over time. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time is studied. The DM algorithm is an extension of Matrix Influence (MATI) algorithm and solves the Influence Maximization (IM) problem in dynamic networks and is proposed under the Linear Threshold (LT) and Independent Cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: Influence maximization, dynamic social networks, diffusion, social influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
2959 Real-Time Defects Detection Algorithm for High-Speed Steel Bar in Coil

Authors: Se Ho Choi, Jong Pil Yun, Boyeul Seo, YoungSu Park, Sang Woo Kim

Abstract:

This paper presents a real-time defect detection algorithm for high-speed steel bar in coil. Because the target speed is very high, proposed algorithm should process quickly the large volumes of image for real-time processing. Therefore, defect detection algorithm should satisfy two conflicting requirements of reducing the processing time and improving the efficiency of defect detection. To enhance performance of detection, edge preserving method is suggested for noise reduction of target image. Finally, experiment results show that the proposed algorithm guarantees the condition of the real-time processing and accuracy of detection.

Keywords: Defect detection, edge preserving filter, real-time image processing, surface inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3294
2958 Part of Speech Tagging Using Statistical Approach for Nepali Text

Authors: Archit Yajnik

Abstract:

Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.

Keywords: Hidden Markov model, Viterbi algorithm, POS tagging, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
2957 Performance Analysis of List Scheduling in Heterogeneous Computing Systems

Authors: Keqin Li

Abstract:

Given a parallel program to be executed on a heterogeneous computing system, the overall execution time of the program is determined by a schedule. In this paper, we analyze the worst-case performance of the list scheduling algorithm for scheduling tasks of a parallel program in a mixed-machine heterogeneous computing system such that the total execution time of the program is minimized. We prove tight lower and upper bounds for the worst-case performance ratio of the list scheduling algorithm. We also examine the average-case performance of the list scheduling algorithm. Our experimental data reveal that the average-case performance of the list scheduling algorithm is much better than the worst-case performance and is very close to optimal, except for large systems with large heterogeneity. Thus, the list scheduling algorithm is very useful in real applications.

Keywords: Average-case performance, list scheduling algorithm, mixed-machine heterogeneous computing system, worst-case performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
2956 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation

Authors: Seung-Won Jung, Hye-Soo Kim, Le Thanh Ha, Seung-Jin Baek, Sung-Jea Ko

Abstract:

In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.

Keywords: Deinterlacing, polynomial interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
2955 A Study of the Effectiveness of the Routing Decision Support Algorithm

Authors: Wayne Goodridge, Alexander Nikov, Ashok Sahai

Abstract:

Multi criteria decision making (MCDM) methods like analytic hierarchy process, ELECTRE and multi-attribute utility theory are critically studied. They have irregularities in terms of the reliability of ranking of the best alternatives. The Routing Decision Support (RDS) algorithm is trying to improve some of their deficiencies. This paper gives a mathematical verification that the RDS algorithm conforms to the test criteria for an effective MCDM method when a linear preference function is considered.

Keywords: Decision support systems, linear preference function, multi-criteria decision-making algorithm, analytic hierarchy process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
2954 A new Heuristic Algorithm for the Dynamic Facility Layout Problem with Budget Constraint

Authors: Parham Azimi, Hamid Reza Charmchi

Abstract:

In this research, we have developed a new efficient heuristic algorithm for the dynamic facility layout problem with budget constraint (DFLPB). This heuristic algorithm combines two mathematical programming methods such as discrete event simulation and linear integer programming (IP) to obtain a near optimum solution. In the proposed algorithm, the non-linear model of the DFLP has been changed to a pure integer programming (PIP) model. Then, the optimal solution of the PIP model has been used in a simulation model that has been designed in a similar manner as the DFLP for determining the probability of assigning a facility to a location. After a sufficient number of runs, the simulation model obtains near optimum solutions. Finally, to verify the performance of the algorithm, several test problems have been solved. The results show that the proposed algorithm is more efficient in terms of speed and accuracy than other heuristic algorithms presented in previous works found in the literature.

Keywords: Budget constraint, Dynamic facility layout problem, Integer programming, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
2953 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System

Authors: S. Abdourraziq, R. El Bachtiri

Abstract:

The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.

Keywords: Photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
2952 Fast 3D Collision Detection Algorithm using 2D Intersection Area

Authors: Taehyun Yoon, Keechul Jung

Abstract:

There are many researches to detect collision between real object and virtual object in 3D space. In general, these techniques are need to huge computing power. So, many research and study are constructed by using cloud computing, network computing, and distribute computing. As a reason of these, this paper proposed a novel fast 3D collision detection algorithm between real and virtual object using 2D intersection area. Proposed algorithm uses 4 multiple cameras and coarse-and-fine method to improve accuracy and speed performance of collision detection. In the coarse step, this system examines the intersection area between real and virtual object silhouettes from all camera views. The result of this step is the index of virtual sensors which has a possibility of collision in 3D space. To decide collision accurately, at the fine step, this system examines the collision detection in 3D space by using the visual hull algorithm. Performance of the algorithm is verified by comparing with existing algorithm. We believe proposed algorithm help many other research, study and application fields such as HCI, augmented reality, intelligent space, and so on.

Keywords: Collision Detection, Computer Vision, Human Computer Interaction, Visual Hull

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
2951 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
2950 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: Cryptography, elliptic curve digital signature algorithm, key exchange, network security protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
2949 Data Mining Using Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
2948 Evolved Strokes in Non Photo–Realistic Rendering

Authors: Ashkan Izadi, Vic Ciesielski

Abstract:

We describe a work with an evolutionary computing algorithm for non photo–realistic rendering of a target image. The renderings are produced by genetic programming. We have used two different types of strokes: “empty triangle" and “filled triangle" in color level. We compare both empty and filled triangular strokes to find which one generates more aesthetic pleasing images. We found the filled triangular strokes have better fitness and generate more aesthetic images than empty triangular strokes.

Keywords: Artificial intelligence, Evolutionary programming, Geneticprogramming, Non photo–realistic rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
2947 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
2946 A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network

Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane

Abstract:

Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.

Keywords: Wireless Sensors Networks, Localization problem, localization average error, DV–Hop Algorithm, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958