Search results for: design process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9202

Search results for: design process

8542 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: Ceramic membrane, edible oil, microfiltration, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
8541 Quality Based Approach for Efficient Biologics Manufacturing

Authors: Takashi Kaminagayoshi, Shigeyuki Haruyama

Abstract:

To improve the manufacturing efficiency of biologics, such as antibody drugs, a quality engineering framework was designed. Within this framework, critical steps and parameters in the manufacturing process were studied. Identification of these critical steps and critical parameters allows a deeper understanding of manufacturing capabilities, and suggests to process development department process control standards based on actual manufacturing capabilities as part of a PDCA (plan-do-check-act) cycle. This cycle can be applied to each manufacturing process so that it can be standardized, reducing the time needed to establish each new process.

Keywords: Antibody drugs, biologics, manufacturing efficiency, PDCA cycle, quality engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
8540 The Creation of Contemporary Apparel Inspired by the Structural Pattern Sofa Vimanmek Mansion

Authors: Chanoknart Mayusoh

Abstract:

In most of apparel creation, the designer usually uses standard pattern as a fundamental of pattern making. In the design of each kind of apparel, standard pattern is starting point of production. The importance of standard pattern is that it is able to have the apparel fits to general people. Therefore, standard pattern is standardized to be the same. Regardless which type of apparel, its standard pattern will have similar production. Anyhow, the author sees that the apparel design, regardless for which type of apparel, has to stick on the standard pattern as a fundamental of apparel design and this seems to be a limitation of apparel design without any designing alternative being developed. In the research on the creation of contemporary apparel Inspired by the sofa’s pattern structure in Vimanmek Mansion. The author has applied the pattern of the sofa and armchair to be the principle in the apparel design, instead of standard pattern, to create new form of structures and shapes making the contemporary apparel becomes more interesting and different than previous, can be used in daily life, as well as being a new alternative for apparel design. Those who are interesting in such idea can apply and develop it to be more variety further.

Keywords: Contemporary Apparel, Sofa’s Pattern, Armchair’s Pattern, Vimanmek Mansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
8539 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

The paper discusses the main aspects involved in the development of a supply chain management system using the developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.

Keywords: Demand forecasting, machine learning, risk management, supply chain design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
8538 RBF modeling of Incipient Motion of Plane Sand Bed Channels

Authors: Gopu Sreenivasulu, Bimlesh Kumar, Achanta Ramakrishna Rao

Abstract:

To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.

Keywords: Incipient motion, Prediction error, Radial-Basisfunction, Sediment transport, Shields' diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
8537 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, A. Syed-Khaja, J. Franke

Abstract:

The importance of energy efficiency within the production processes increases steadily. For a comprehensive assessment of energy efficiency within the production process, unfortunately no tools exist or have been developed yet. Therefore the Institute for Factory Automation and Production Systems at the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency namely EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state-of-the-art as well as the developed approaches.

Keywords: Energy efficiency, energy efficiency value, energetic process efficiency, production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275
8536 Integrate Communication Modeling into the Design Modeling at Early Stages of the Design Flow Case Study: Unmanned Aerial Vehicle (UAV)

Authors: Ibrahim A. Aref, Tarek A. El-Mihoub

Abstract:

This paper shows how we can integrate communication modeling into the design modeling at early stages of the design flow. We consider effect of incorporating noise such as impulsive noise on system stability. We show that with change of the system model and investigate the system performance under the different communication effects. We modeled a unmanned aerial vehicle (UAV) as a demonstration using SystemC methodology. Moreover the system is modeled by joining the capabilities of UML and SystemC to operate at system level.

Keywords: Modelling, SoC, SystemC, UAV, Simulation, SoC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
8535 Design and Fabrication of a Parabolic Trough Collector and Experimental Investigation of Wind Impact on Direct Steam Production in Tehran

Authors: H. Akhbari, M. Bidi, A. Bakhtiari, S. Eslami

Abstract:

The present paper aims to the techno-economic feasibility of enhancing low-cost parabolic trough collectors in the light of developing the use of solar energy in under-developed regions where expensive high-tech solar devices cannot be afforded. Moreover, the collector is aimed to produce steam so that its performance is based on heat which can be discovered. In this regard, the manufacturing process and the detailed design models in Solidworks software are elaborated. Furthermore, the colletor’s material is chosen in a way to minimize the costs. Finally, to assess the performance of the built collector, it is installed in the site of Shahid Beheshti University, Tehran, and the values of the effective peripheral parameters, such as temperature, wind speed, and most importantly, solar irradiance, are recorded simultaneously in June. According to the results obtained, the manufactured collector with the aperture area of 2 m2 (1×2 m) is capable of producing 350 ml.h-1 steam. Also, the wind influence is comprehensively investigated in this paper. As a case in point, it was measured that as the wind speed maximized to 9.77 km/h, the amount of steam outlet is minimized to 580 ml.

Keywords: Direct steam production, design and fabrication parabolic trough collector, solar water heater, wind impact, experimental investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
8534 Automatic Design Algorithm for the Tower Crane Foundations

Authors: Sungho Lee, Goonjae Lee, Chaeyeon Lim, Sunkuk Kim

Abstract:

Foundation of tower crane serves to ensure stability against vertical and horizontal forces. If foundation stress is not sufficient, tower crane may be subject to overturning, shearing or foundation settlement. Therefore, engineering review of stable support is a highly critical part of foundation design. However, there are not many professionals who can conduct engineering review of tower crane foundation and, if any, they have information only on a small number of cranes in which they have hands-on experience. It is also customary to rely on empirical knowledge and tower crane renter-s recommendations rather than designing foundation on the basis of engineering knowledge. Therefore, a foundation design automation system considering not only lifting conditions but also overturning risk, shearing and vertical force may facilitate production of foolproof foundation design for experts and enable even non-experts to utilize professional knowledge that only experts can access now. This study proposes Automatic Design Algorithm for the Tower Crane Foundations considering load and horizontal force.

Keywords: Tower Crane, Automatic Design, Foundations, Optimization Algorithm, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7206
8533 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: Multivariate control chart, statistical process control, one-class classification method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
8532 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines

Authors: H. Al-Jabli

Abstract:

Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.

Keywords: High saline brine, freeze-melting process, ice crystallization, brine disposal process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
8531 Sensorless Control of Induction Motor: Design and Stability Analysis

Authors: Nadia Bensiali, Erik Etien, Amar Omeiri, Gerard Champenois

Abstract:

Adaptive observers used in sensorless control of induction motors suffer from instability especally in regenerating mode. In this paper, an optimal feed back gain design is proposed, it can reduce the instability region in the torque speed plane .

Keywords: Induction motor drive, adaptive observer, regenerating mode, stabilizing design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
8530 Topology Optimization of Aircraft Fuselage Structure

Authors: Muniyasamy Kalanchiam, Baskar Mannai

Abstract:

Topology Optimization is a defined as the method of determining optimal distribution of material for the assumed design space with functionality, loads and boundary conditions [1]. Topology optimization can be used to optimize shape for the purposes of weight reduction, minimizing material requirements or selecting cost effective materials [2]. Topology optimization has been implemented through the use of finite element methods for the analysis, and optimization techniques based on the method of moving asymptotes, genetic algorithms, optimality criteria method, level sets and topological derivatives. Case study of Typical “Fuselage design" is considered for this paper to explain the benefits of Topology Optimization in the design cycle. A cylindrical shell is assumed as the design space and aerospace standard pay loads were applied on the fuselage with wing attachments as constraints. Then topological optimization is done using Finite Element (FE) based software. This optimization results in the structural concept design which satisfies all the design constraints using minimum material.

Keywords: Fuselage, Topology optimization, payloads, designoptimization, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4085
8529 The Framework of Termination Mechanism in Modern Emergency Management

Authors: Yannan Wu, An Chen, Yan Zhao

Abstract:

Termination Mechanism is an indispensible part of the emergency management mechanism. Despite of its importance in both theory and practice, it is almost a brand new field for researching. The concept of termination mechanism is proposed firstly in this paper, and the design and implementation which are helpful to guarantee the effect and integrity of emergency management are discussed secondly. Starting with introduction of the problems caused by absent termination and incorrect termination, the essence of termination mechanism is analyzed, a model based on Optimal Stopping Theory is constructed and the termination index is given. The model could be applied to find the best termination time point.. Termination decision should not only be concerned in termination stage, but also in the whole emergency management process, which makes it a dynamic decision making process. Besides, the main subjects and the procedure of termination are illustrated after the termination time point is given. Some future works are discussed lastly.

Keywords: Emergency management, Termination Mechanism, Optimal Termination Model, Decision Making, Optimal StoppingTheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
8528 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters

Authors: Srinivasan Chandrasekaran, R. Nagavinothini

Abstract:

Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.

Keywords: Buoyant legs, dynamic analysis, offshore structures, preliminary design, random waves, triceratops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
8527 Flagging Critical Components to Prevent Transient Faults in Real-Time Systems

Authors: Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega Sanchez

Abstract:

This paper proposes the use of metrics in design space exploration that highlight where in the structure of the model and at what point in the behaviour, prevention is needed against transient faults. Previous approaches to tackle transient faults focused on recovery after detection. Almost no research has been directed towards preventive measures. But in real-time systems, hard deadlines are performance requirements that absolutely must be met and a missed deadline constitutes an erroneous action and a possible system failure. This paper proposes the use of metrics to assess the system design to flag where transient faults may have significant impact. These tools then allow the design to be changed to minimize that impact, and they also flag where particular design techniques – such as coding of communications or memories – need to be applied in later stages of design.

Keywords: Criticality, Metrics, Real-Time Systems, Transient Faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
8526 Evaluating the Appropriateness of Passive Techniques Used in Achieving Thermal Comfort in Buildings: A Case of Lautech College of Health Sciences, Ogbomoso

Authors: Ilelabayo I. Adebisi, Yetunde R. Okeyinka, Abdulrasaq K. Ayinla

Abstract:

Architectural design is a complex process especially when the issue of user’s comfort, building sustainability and energy efficiency needs to be addressed. The current energy challenge and the seek for an environment where users will have a more physiological and psychological comfort in this part of the world have led various researchers to constantly explore the concept of passive design techniques. Passive techniques are design strategies used in regulating building indoor climates and improving users comfort without the use of energy driven devices. This paper describes and analyses the significance of passive techniques on indoor climates and their impact on thermal comfort of building users using LAUTECH College of health sciences Ogbomoso as a case study. The study aims at assessing the appropriateness of the passive strategies used in achieving comfort in their buildings with a view to evaluate their adequacy and effectiveness and suggesting how comfortable their building users are. This assessment was carried out through field survey and questionnaires and findings revealed that strategies such as Orientation, Spacing, Courtyards, window positioning and choice of landscape adopted are inadequate while only fins and roof overhangs are adequate. The finding also revealed that 72% of building occupants feel hot discomfort in their various spaces and hence have the urge to get fresh air from outside during work hours. The Mahoney table was used to provide appropriate architectural design recommendations to guide future designers in the study area.

Keywords: Energy challenge, passive cooling, techniques, thermal comfort, users comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
8525 Simultaneous Saccharification and Fermentation(SSF) of Sugarcane Bagasse - Kinetics and Modeling

Authors: E.Sasikumar, T.Viruthagiri

Abstract:

Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) was obtained from 50 g/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.

Keywords: Sugarcane bagasse, ethanol, optimization, Pachysolen tannophilus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
8524 Overriding Moral Intuitions – Does It Make Us Immoral? Dual-Process Theory of Higher Cognition Account for Moral Reasoning

Authors: Michał Białek, Simon J. Handley

Abstract:

Moral decisions are considered as an intuitive process, while conscious reasoning is mostly used only to justify those intuitions. This problem is described in few different dual-process theories of mind, that are being developed e.g. by Frederick and Kahneman, Stanovich and Evans. Those theories recently evolved into tri-process theories with a proposed process that makes ultimate decision or allows to paraformal processing with focal bias.. Presented experiment compares the decision patterns to the implications of those models. In presented study participants (n=179) considered different aspects of trolley dilemma or its footbridge version and decided after that. Results show that in the control group 70% of people decided to use the lever to change tracks for the running trolley, and 20% chose to push the fat man down the tracks. In contrast, after experimental manipulation almost no one decided to act. Also the decision time difference between dilemmas disappeared after experimental manipulation. The result supports the idea of three co-working processes: intuitive (TASS), paraformal (reflective mind) and algorithmic process.

Keywords: Moral reasoning, moral decision, reflection, trolley problem, dual-process theory of reasoning, tri-process theory of cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
8523 A Study on the Developing Method of the BIM (Building Information Modeling) Software Based On Cloud Computing Environment

Authors: Byung-Kon Kim

Abstract:

According as the Architecture, Engineering and Construction (AEC) Industry projects have grown more complex and larger, the number of utilization of BIM for 3D design and simulation is increasing significantly. Therefore, typical applications of BIM such as clash detection and alternative measures based on 3-dimenstional planning are expanded to process management, cost and quantity management, structural analysis, check for regulation, and various domains for virtual design and construction. Presently, commercial BIM software is operated on single-user environment, so initial cost is so high and the investment may be wasted frequently. Cloud computing that is a next-generation internet technology enables simple internet devices (such as PC, Tablet, Smart phone etc) to use services and resources of BIM software. In this paper, we suggested developing method of the BIM software based on cloud computing environment in order to expand utilization of BIM and reduce cost of BIM software. First, for the benchmarking, we surveyed successful case of BIM and cloud computing. And we analyzed needs and opportunities of BIM and cloud computing in AEC Industry. Finally, we suggested main functions of BIM software based on cloud computing environment and developed a simple prototype of cloud computing BIM software for basic BIM model viewing.

Keywords: Construction IT, BIM(Building Information Modeling), Cloud Computing, BIM Service Based Cloud Computing, Viewer Based BIM Server, 3D Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4090
8522 Efficient Tools for Managing Uncertainties in Design and Operation of Engineering Structures

Authors: J. Menčík

Abstract:

Actual load, material characteristics and other quantities often differ from the design values. This can cause worse function, shorter life or failure of a civil engineering structure, a machine, vehicle or another appliance. The paper shows main causes of the uncertainties and deviations and presents a systematic approach and efficient tools for their elimination or mitigation of consequences. Emphasis is put on the design stage, which is most important for reliability ensuring. Principles of robust design and important tools are explained, including FMEA, sensitivity analysis and probabilistic simulation methods. The lifetime prediction of long-life objects can be improved by long-term monitoring of the load response and damage accumulation in operation. The condition evaluation of engineering structures, such as bridges, is often based on visual inspection and verbal description. Here, methods based on fuzzy logic can reduce the subjective influences.

Keywords: Design, fuzzy methods, Monte Carlo, reliability, robust design, sensitivity analysis, simulation, uncertainties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
8521 Identification of Individual Objects at the Intelligent Assembly Cell

Authors: Ružarovský, Roman, Danišová, Nina, Velíšek, Karol

Abstract:

In this contribution is presented a complex design of individual objects identification in the workplace of intelligent assembly cell. Intelligent assembly cell is situated at Institute of Manufacturing Systems and Applied Mechanics and is used for pneumatic actuator assembly. Pneumatic actuator components are pneumatic roller, cover, piston and spring. Two identification objects alternatives for assembly are designed in the workplace of industrial robot. In the contribution is evaluated and selected suitable alternative for identification – 2D codes reader. The complex design of individual object identification is going out of intelligent manufacturing systems knowledge. Intelligent assembly and manufacturing systems as systems of new generation are gradually loaded in to the mechanical production, when they are removeing human operation out of production process and they also short production times.

Keywords: system, cell, intelligent, mechanics, device

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
8520 A Study on Stochastic Integral Associated with Catastrophes

Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan

Abstract:

We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t).

Keywords: Stochastic integrals, single–server queue model, catastrophes, busy period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
8519 Energy Efficient Plant Design Approaches: Case Study of the Sample Building of the Energy Efficiency Training Facilities

Authors: Idil Kanter Otcu

Abstract:

Nowadays, due to the growing problems of energy supply and the drastic reduction of natural non-renewable resources, the development of new applications in the energy sector and steps towards greater efficiency in energy consumption are required. Since buildings account for a large share of energy consumption, increasing the structural density of buildings causes an increase in energy consumption. This increase in energy consumption means that energy efficiency approaches to building design and the integration of new systems using emerging technologies become necessary in order to curb this consumption. As new systems for productive usage of generated energy are developed, buildings that require less energy to operate, with rational use of resources, need to be developed. One solution for reducing the energy requirements of buildings is through landscape planning, design and application. Requirements such as heating, cooling and lighting can be met with lower energy consumption through planting design, which can help to achieve more efficient and rational use of resources. Within this context, rather than a planting design which considers only the ecological and aesthetic features of plants, these considerations should also extend to spatial organization whereby the relationship between the site and open spaces in the context of climatic elements and planting designs are taken into account. In this way, the planting design can serve an additional purpose. In this study, a landscape design which takes into consideration location, local climate morphology and solar angle will be illustrated on a sample building project.

Keywords: Energy efficiency, landscape design, plant design, xeriscape landscape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
8518 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in the Hong Kong Construction Industry

Authors: Kwok Tak Kit

Abstract:

The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2°C above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.

Keywords: sustainability, sustainable engineering, BIM, LEED

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
8517 Design of Identification Based Adaptive Control for Fermentation Process in Bioreactor

Authors: J. Ritonja

Abstract:

The biochemical technology has been developing extremely fast since the middle of the last century. The main reason for such development represents a requirement for large production of high-quality biologically manufactured products such as pharmaceuticals, foods, and beverages. The impact of the biochemical industry on the world economy is enormous. The great importance of this industry also results in intensive development in scientific disciplines relevant to the development of biochemical technology. In addition to developments in the fields of biology and chemistry, which enable to understand complex biochemical processes, development in the field of control theory and applications is also very important. In the paper, the control for the biochemical reactor for the milk fermentation was studied. During the fermentation process, the biophysical quantities must be precisely controlled to obtain the high-quality product. To control these quantities, the bioreactor’s stirring drive and/or heating system can be used. Available commercial biochemical reactors are equipped with open loop or conventional linear closed loop control system. Due to the outstanding parameters variations and the partial nonlinearity of the biochemical process, the results obtained with these control systems are not satisfactory. To improve the fermentation process, the self-tuning adaptive control system was proposed. The use of the self-tuning adaptive control is suggested because the parameters’ variations of the studied biochemical process are very slow in most cases. To determine the linearized mathematical model of the fermentation process, the recursive least square identification method was used. Based on the obtained mathematical model the linear quadratic regulator was tuned. The parameters’ identification and the controller’s synthesis are executed on-line and adapt the controller’s parameters to the fermentation process’ dynamics during the operation. The use of the proposed combination represents the original solution for the control of the milk fermentation process. The purpose of the paper is to contribute to the progress of the control systems for the biochemical reactors. The proposed adaptive control system was tested thoroughly. From the obtained results it is obvious that the proposed adaptive control system assures much better following of the reference signal as a conventional linear control system with fixed control parameters.

Keywords: Adaptive control, biochemical reactor, linear quadratic regulator, recursive least square identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
8516 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry

Authors: A. Tellaeche, R. Arana

Abstract:

Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.

Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
8515 Frequency-Domain Design of Fractional-Order FIR Differentiators

Authors: Wei-Der Chang, Dai-Ming Chang, Eri-Wei Chiang, Chia-Hung Lin, Jian-Liung Chen

Abstract:

In this paper, a fractional-order FIR differentiator design method using the differential evolution (DE) algorithm is presented. In the proposed method, the FIR digital filter is designed to meet the frequency response of a desired fractal-order differentiator, which is evaluated in the frequency domain. To verify the design performance, another design method considered in the time-domain is also provided. Simulation results reveal the efficiency of the proposed method.

Keywords: Fractional-order differentiator, FIR digital filter, Differential evolution algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
8514 Negotiation Support for Value-based Decision in Construction

Authors: Christiono Utomo, Arazi Idrus, Isnanto, Annisa Nugraheni, Farida Rahmawati

Abstract:

A Negotiation Support is required on a value-based decision to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. This study demonstrates a process of negotiation support model for selection of a building system from value-based design perspective. The perspective is based on comparison of function and cost of a building system. Multi criteria decision techniques were applied to determine the relative value of the alternative solutions for performing the function. A satisfying option game theory are applied to the criteria of value-based decision which are LCC (life cycle cost) and function based FAST. The results demonstrate a negotiation process to select priorities of a building system. The support model can be extended to an automated negotiation by combining value based decision method, group decision and negotiation support.

Keywords: NSS, Value-based, Decision, Construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
8513 A Discrete Choice Modeling Approach to Modular Systems Design

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.

Keywords: Constrained discrete combinatorial choice, modular systems design, optimization problem, PC configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013