Search results for: computational modeling.
2378 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang
Abstract:
The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of the targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.
Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472377 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems
Authors: Nyeng P. Gyang
Abstract:
Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.Keywords: Cloud computing systems, multicore systems, parallel delaunay triangulation, parallel surface modeling and generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8792376 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation
Authors: Ketan Naik, P. H. Bhathawala
Abstract:
The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.Keywords: Cardiovascular system, lumped parameter method, mathematical modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33612375 Irreversibility and Electrochemical Modeling of GT-SOFC Hybrid System and Parametric Analysis on Performance of Fuel Cell
Authors: R. Mahjoub, K. Maghsoudi Mehraban
Abstract:
Since the heart of the hybrid system is the fuel cell and it has vital impact on efficiency and performance of cycle, in this study, the major modeling of electrochemical reaction within the fuel cell is analyzed. Also, solid oxide fuel cell is integrated with the gas turbine and thermodynamic analysis on different elements of hybrid system is applied. Next, in predefined operational points of hybrid cycle, the simulation results are obtained. Then, different source of irreversibility in fuel cell is modeled and influence of different major parameters on different irreversibility is computed and applied. Then, the effect of important parameters such as thickness and surface of electrolyte fuel cell are simulated in fuel cell and its dependency to these parameters is explained. At the end of the paper, different impact of parameters on fuel cell with a gas turbine and current density and voltage of fuel cell are simulated.Keywords: Electrochemical analysis, Gas turbine, Hybrid system, Irreversibility analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15092374 Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle
Authors: Sri Raman A., A.K.Ghosh
Abstract:
At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.
Keywords: High speed underwater vehicle, Non-Linear Dynamic Inverse (NDI), six-dof modeling, Supercavitation, Torpedo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715862373 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment
Authors: Leila Torkaman, Nasser Ghassembaglou
Abstract:
Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration, and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified; finally needed methods to optimize energy consumption and coolers’ classification are provided.
Keywords: Cooler, EER, Energy Label, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25672372 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases
Authors: Mohammad A. Bani-Khaled
Abstract:
In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.
Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10162371 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem
Authors: Mohsen Ziaee
Abstract:
In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.Keywords: Scheduling, flexible job shop, makespan, mixed integer linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16882370 Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter
Authors: M. Rychlik, R. Roszak, M. Morzynski, M. Nowak, H. Hausa, K. Kotecki
Abstract:
Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.Keywords: computer modeling, numerical simulation, Reverse Engineering, structural model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17592369 Subcritical Water Extraction of Mannitol from Olive Leaves
Authors: S. M. Ghoreishi, R. Gholami Shahrestani, S. H. Ghaziaskar
Abstract:
Subcritical water extraction was investigated as a novel and alternative technology in the food and pharmaceutical industry for the separation of Mannitol from olive leaves and its results was compared with those of Soxhlet extraction. The effects of temperature, pressure, and flow rate of water and also momentum and mass transfer dimensionless variables such as Reynolds and Peclet Numbers on extraction yield and equilibrium partition coefficient were investigated. The 30-110 bars, 60-150°C, and flow rates of 0.2-2 mL/min were the water operating conditions. The results revealed that the highest Mannitol yield was obtained at 100°C and 50 bars. However, extraction of Mannitol was not influenced by the variations of flow rate. The mathematical modeling of experimental measurements was also investigated and the model is capable of predicting the experimental measurements very well. In addition, the results indicated higher extraction yield for the subcritical water extraction in contrast to Soxhlet method.Keywords: Extraction, Mannitol, Modeling, Olive leaves, Soxhlet extraction, Subcritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30672368 Modeling and Simulation of Overcurrent and Earth Fault Relay with Inverse Definite Minimum Time
Authors: Win Win Tun, Han Su Yin, Ohn Zin Lin
Abstract:
Transmission networks are an important part of an electric power system. The transmission lines not only have high power transmission capacity but also they are prone of larger magnitudes. Different types of faults occur in transmission lines such as single line to ground (L-G) fault, double line to ground (L-L-G) fault, line to line (L-L) fault and three phases (L-L-L) fault. These faults are needed to be cleared quickly in order to reduce damage caused to the system and they have high impact on the electrical power system equipment’s which are connected in transmission line. The main fault in transmission line is L-G fault. Therefore, protection relays are needed to protect transmission line. Overcurrent and earth fault relay is an important relay used to protect transmission lines, distribution feeders, transformers and bus couplers etc. Sometimes these relays can be used as main protection or backup protection. The modeling of protection relays is important to indicate the effects of network parameters and configurations on the operation of relays. Therefore, the modeling of overcurrent and earth fault relay is described in this paper. The overcurrent and earth fault relays with standard inverse definite minimum time are modeled and simulated by using MATLAB/Simulink software. The developed model was tested with L-G, L-L-G, L-L and L-L-L faults with various fault locations and fault resistance (0.001Ω). The simulation results are obtained by MATLAB software which shows the feasibility of analysis of transmission line protection with overcurrent and earth fault relay.
Keywords: Transmission line, overcurrent and earth fault relay, standard inverse definite minimum time, various faults, MATLAB Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9942367 Modeling and Performance Evaluation of LTE Networks with Different TCP Variants
Authors: Ghassan A. Abed, Mahamod Ismail, Kasmiran Jumari
Abstract:
Long Term Evolution (LTE) is a 4G wireless broadband technology developed by the Third Generation Partnership Project (3GPP) release 8, and it's represent the competitiveness of Universal Mobile Telecommunications System (UMTS) for the next 10 years and beyond. The concepts for LTE systems have been introduced in 3GPP release 8, with objective of high-data-rate, low-latency and packet-optimized radio access technology. In this paper, performance of different TCP variants during LTE network investigated. The performance of TCP over LTE is affected mostly by the links of the wired network and total bandwidth available at the serving base station. This paper describes an NS-2 based simulation analysis of TCP-Vegas, TCP-Tahoe, TCPReno, TCP-Newreno, TCP-SACK, and TCP-FACK, with full modeling of all traffics of LTE system. The Evaluation of the network performance with all TCP variants is mainly based on throughput, average delay and lost packet. The analysis of TCP performance over LTE ensures that all TCP's have a similar throughput and the best performance return to TCP-Vegas than other variants.Keywords: LTE; EUTRAN; 3GPPP, SAE; TCP Variants; NS-2
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32772366 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph
Authors: A. Badoud, M. Khemliche, S. Latreche
Abstract:
The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.Keywords: Bond Graph, Modeling, Simulation, Monitoring, Analytical Redundancy Relations, Pressurized Water Reactor, Directed Graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19782365 Subarray Based Multiuser Massive MIMO Design Adopting Large Transmit and Receive Arrays
Authors: Tetsuki Taniguchi, Yoshio Karasawa
Abstract:
This paper describes a subarray based low computational design method of multiuser massive multiple input multiple output (MIMO) system. In our previous works, use of large array is assumed only in transmitter, but this study considers the case both of transmitter and receiver sides are equipped with large array antennas. For this aim, receive arrays are also divided into several subarrays, and the former proposed method is modified for the synthesis of a large array from subarrays in both ends. Through computer simulations, it is verified that the performance of the proposed method is degraded compared with the original approach, but it can achieve the improvement in the aspect of complexity, namely, significant reduction of the computational load to the practical level.Keywords: Massive multiple input multiple output (MIMO), multiuser, large array, subarray, zero forcing, singular value decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19762364 Numerical Investigation of Pressure Drop and Erosion Wear by Computational Fluid Dynamics Simulation
Authors: Praveen Kumar, Nitin Kumar, Hemant Kumar
Abstract:
The modernization of computer technology and commercial computational fluid dynamic (CFD) simulation has given better detailed results as compared to experimental investigation techniques. CFD techniques are widely used in different field due to its flexibility and performance. Evaluation of pipeline erosion is complex phenomenon to solve by numerical arithmetic technique, whereas CFD simulation is an easy tool to resolve that type of problem. Erosion wear behaviour due to solid–liquid mixture in the slurry pipeline has been investigated using commercial CFD code in FLUENT. Multi-phase Euler-Lagrange model was adopted to predict the solid particle erosion wear in 22.5° pipe bend for the flow of bottom ash-water suspension. The present study addresses erosion prediction in three dimensional 22.5° pipe bend for two-phase (solid and liquid) flow using finite volume method with standard k-ε turbulence, discrete phase model and evaluation of erosion wear rate with varying velocity 2-4 m/s. The result shows that velocity of solid-liquid mixture found to be highly dominating parameter as compared to solid concentration, density, and particle size. At low velocity, settling takes place in the pipe bend due to low inertia and gravitational effect on solid particulate which leads to high erosion at bottom side of pipeline.Keywords: Computational fluid dynamics, erosion, slurry transportation, k-ε Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19192363 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.
Keywords: Additive manufacturing, decision-makings, environmental impact, predictive models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10612362 Well-Being in Adolescence: Fitting Measurement Model
Authors: Azlina Abu Bakar, Abdul Fatah Wan Sidek
Abstract:
Well-being has been given special emphasis in quality of life. It involves living a meaningful, life satisfaction, stability and happiness in life. Well-being also concerns the satisfaction of physical, psychological, social needs and demands of an individual. The purpose of this study was to validate three-factor measurement model of well-being using structural equation modeling (SEM). The conceptions of well-being measured such dimensions as physical, psychological and social well-being. This study was done based on a total sample of 650 adolescents from east-coast of peninsular Malaysia. The Well-Being Scales which was adapted from [1] was used in this study. The items were hypothesized a priori to have nonzero loadings on all dimensions in the model. The findings of the SEM demonstrated that it is a good fitting model which the proposed model fits the driving theory; (x2df = 1.268; GFI = .994; CFI = .998; TLI= .996; p = .255; RMSEA = .021). Composite reliability (CR) was .93 and average variance extracted (AVE) was 58%. The model in this study fits with the sample of data and well-being is important to bring sustainable development to the mainstream.Keywords: Adolescence, Structural Equation Modeling, Sustainable Development, Well-Being.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30772361 Parametric Studies of Wood Pyrolysis Particles
Authors: W. Afef, A. Mohamed Ammar, G. Kamel, O. Ahmed
Abstract:
In the present study, a numerical approach to describe the pyrolysis of a single solid particle of wood is used to study the influence of various conditions such as particle size, heat transfer coefficient, reactor temperature and heating rate. The influence of these parameters in the change of the duration of the pyrolysis cycle was studied. Mathematical modeling was employed to simulate the heat, mass transfer, and kinetic processes inside the reactor. The evolutions of the mass loss as well as the evolution of temperature inside the thick piece are investigated numerically. The elaborated model was also employed to study the effect of the reactor temperature and the rate of heating on the change of the temperature and the local loss of the mass inside the piece of wood. The obtained results are in good agreement with the experimental data available in the literature.
Keywords: Wood, Pyrolysis, Modeling, Convective heat transfer, Kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13752360 Computational Networks for Knowledge Representation
Authors: Nhon Van Do
Abstract:
In the artificial intelligence field, knowledge representation and reasoning are important areas for intelligent systems, especially knowledge base systems and expert systems. Knowledge representation Methods has an important role in designing the systems. There have been many models for knowledge such as semantic networks, conceptual graphs, and neural networks. These models are useful tools to design intelligent systems. However, they are not suitable to represent knowledge in the domains of reality applications. In this paper, new models for knowledge representation called computational networks will be presented. They have been used in designing some knowledge base systems in education for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the program for solving problems about alternating current in physics.Keywords: Artificial intelligence, artificial intelligence and education, knowledge engineering, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22182359 Mathematical Modeling of Gas Turbine Blade Cooling
Authors: А. Pashayev, C. Ardil, D. Askerov, R. Sadiqov, A. Samedov
Abstract:
In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.Keywords: Mathematical Modeling, Gas Turbine Blade Cooling, Neural Networks, BIEM and FDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20922358 Hybrid Genetic-Simulated Annealing Approach for Fractal Image Compression
Authors: Y.Chakrapani, K.Soundera Rajan
Abstract:
In this paper a hybrid technique of Genetic Algorithm and Simulated Annealing (HGASA) is applied for Fractal Image Compression (FIC). With the help of this hybrid evolutionary algorithm effort is made to reduce the search complexity of matching between range block and domain block. The concept of Simulated Annealing (SA) is incorporated into Genetic Algorithm (GA) in order to avoid pre-mature convergence of the strings. One of the image compression techniques in the spatial domain is Fractal Image Compression but the main drawback of FIC is that it involves more computational time due to global search. In order to improve the computational time along with acceptable quality of the decoded image, HGASA technique has been proposed. Experimental results show that the proposed HGASA is a better method than GA in terms of PSNR for Fractal image Compression.Keywords: Fractal Image Compression, Genetic Algorithm, HGASA, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16652357 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach
Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh
Abstract:
This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.Keywords: Modeling, Neural Networks, Phenol, Soil media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21452356 Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings
Authors: Evgeniia V. Mekhonoshina, Vladimir Ya. Modorskii, Vasilii Yu. Petrov
Abstract:
At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.Keywords: Centrifugal compressor, aeroelasticity, interdisciplinary calculation, oscillation phase displacement, vibration, nonstationarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13222355 Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory
Authors: Gesine Hellwig
Abstract:
Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.
Keywords: Functional imaging, Tracer kinetic modeling, LTIsystem, Indicator dilution theory / convolution approach, Two-Compartment model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14182354 An Efficient Key Management Scheme for Secure SCADA Communication
Authors: Sungjin Lee, Donghyun Choi, Choonsik Park, Seungjoo Kim
Abstract:
A SCADA (Supervisory Control And Data Acquisition) system is an industrial control and monitoring system for national infrastructures. The SCADA systems were used in a closed environment without considering about security functionality in the past. As communication technology develops, they try to connect the SCADA systems to an open network. Therefore, the security of the SCADA systems has been an issue. The study of key management for SCADA system also has been performed. However, existing key management schemes for SCADA system such as SKE(Key establishment for SCADA systems) and SKMA(Key management scheme for SCADA systems) cannot support broadcasting communication. To solve this problem, an Advanced Key Management Architecture for Secure SCADA Communication has been proposed by Choi et al.. Choi et al.-s scheme also has a problem that it requires lots of computational cost for multicasting communication. In this paper, we propose an enhanced scheme which improving computational cost for multicasting communication with considering the number of keys to be stored in a low power communication device (RTU).Keywords: SCADA system, SCADA communication, Key management, Distributed networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22882353 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10602352 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30132351 Implementation of Feed-in Tariffs into Multi-Energy Systems
Authors: M. Schulze, P. Crespo Del Granado
Abstract:
This paper considers the influence of promotion instruments for renewable energy sources (RES) on a multi-energy modeling framework. In Europe, so called Feed-in Tariffs are successfully used as incentive structures to increase the amount of energy produced by RES. Because of the stochastic nature of large scale integration of distributed generation, many problems have occurred regarding the quality and stability of supply. Hence, a macroscopic model was developed in order to optimize the power supply of the local energy infrastructure, which includes electricity, natural gas, fuel oil and district heating as energy carriers. Unique features of the model are the integration of RES and the adoption of Feed-in Tariffs into one optimization stage. Sensitivity studies are carried out to examine the system behavior under changing profits for the feed-in of RES. With a setup of three energy exchanging regions and a multi-period optimization, the impact of costs and profits are determined.Keywords: Distributed generation, optimization methods, power system modeling, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16332350 A Survey: Clustering Ensembles Techniques
Authors: Reza Ghaemi , Md. Nasir Sulaiman , Hamidah Ibrahim , Norwati Mustapha
Abstract:
The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.Keywords: Clustering Ensembles, Combinational Algorithm, Consensus Function, Unsupervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34522349 Computational Investigations of Concrete Footing Rotational Rigidity
Authors: E. S. Fraser, G. P. A. G. van Zijl
Abstract:
In many buildings we rely on large footings to offer structural stability. Designers often compensate for the lack of knowledge available with regard to foundation-soil interaction by furnishing structures with overly large footings. This may lead to a significant increase in building expenditures if many large foundations are present. This paper describes the interface material law that governs the behavior along the contact surface of adjacent materials, and the behavior of a large foundation under ultimate limit loading. A case study is chosen that represents a common foundation-soil system frequently used in general practice and therefore relevant to other structures. Investigations include compressing versus uplifting wind forces, alterations to the foundation size and subgrade compositions, the role of the slab stiffness and presence and the effect of commonly used structural joints and connections. These investigations aim to provide the reader with an objective design approach, efficiently preventing structural instability.Keywords: Computational investigation of footing rotation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603