
 

 

 
Abstract—Additive manufacturing processes have changed 

significantly in a wide range of industries and their application 
progressed from rapid prototyping to production of end-use products. 
However, their environmental impact is still a rather open question. 
In order to support the growth of this technology in the industrial 
sector, environmental aspects should be considered and predictive 
models may help monitor and reduce the environmental footprint of 
the processes. This work presents predictive models based on a 
previously developed methodology for the environmental impact 
evaluation combined with a technical and economical assessment. 
Here we applied the methodology to the Fused Deposition Modeling 
process. First, we present the predictive models relative to different 
types of machines. Then, we present a decision-making tool designed 
to identify the optimum manufacturing strategy regarding technical, 
economic, and environmental criteria. 
 

Keywords—Additive manufacturing, decision-makings, 
environmental impact, predictive models.  

I. INTRODUCTION 

 DDITIVE manufacturing (AM) technologies evolved 
significantly over the last few decades resulting in major 

technical advances. Initially restricted to the manufacture of 
prototype parts, AM is now a fully-fledged manufacturing 
process offering capabilities for functional part production [1]. 
AM processes have been used in industry for a long time, and 
plenty of research has been conducted on aspects of process 
control and product quality [2]. The same goes for the cost of 
these processes [3]. These processes are often described as 
clean processes, as they only use the exact amount of material 
needed to build functional parts, thus limiting waste, which 
makes it a good alternative to reduce the environmental impact 
compared to conventional processes such as machining. 
Nowadays, environmental footprint consideration during the 
manufacturing step of a part has become an important issue in 
our society [4]. In the near future, the choice of machines or 
processes that will minimize environmental impacts will be 
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more common. 
Environmental analysis of AM processes is based on 

multiple criteria. For many years, even after the first studies 
regarding the environmental aspects of AM processes [5], 
electrical energy consumption was the only consumption 
source studied in the literature. These studies were oriented 
towards the definition of the specific energy consumption 
(SEC) [6]. The SEC is the amount of energy consumed in 
kWh for 1 kilogram of processed materials.  

Mognol et al. [7] studied the influence of part orientation on 
the SEC values for three AM processes: powder bed fusion, 
material jetting and material extrusion. They showed that it is 
possible to achieve a substantial energy (43-61%) saving by 
choosing the set of parameters that will minimize the height of 
the part.  

Baumers et al. [8] explored the SEC by studying the effect 
of packing density of the space machine and part geometry on 
the electrical energy consumption of powder bed fusion and 
material extrusion processes. They determined that the SEC 
decreased when multiple parts are manufactured on the same 
time [9].  

Junk and Côté [10] studied the effect of the part placement 
on the build platform on the electrical energy consumption for 
material extrusion and material jetting processes. They found 
that the SEC is lower when the part is manufactured near the 
machine zero point [11].  

Other studies on the SEC of AM processes are reported in 
[12]-[14]. Thus, the SEC is no longer sufficient as soon as we 
need to predict the electrical energy consumption of AM 
processes. Therefore, it is necessary to set up predictive 
models in order to consider all the manufacturing parameters 
of the part. Based on the inventory data presented previously, 
various authors developed parametric models for AM 
processes in order to estimate the environmental impact and 
related environmental footprint during the manufacturing step.  

Baumers et al. developed models that estimate the electrical 
energy consumption and the costs occurring during the 
manufacturing of the part with an accuracy of +/-10% for 
powder bed fusion process (EOSINT M270 DMLS system). 
They concluded that cost minimization in AM leads to the 
minimization of electrical energy consumption [15].  

LeBourhis et al. presented a method to evaluate the 
environmental impact of direct energy deposition process 
using direct additive laser manufacturing technology [16]. 
Based on both analytic and experimental models and using the 
computer-aided design (CAD) model with the energy and 
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resource consumption, the authors estimated the related 
environmental impact.  

Xu et al. developed a model that calculates the total energy 
consumption of binder jetting process during the 
manufacturing step [17]. The authors took into account the 
electrical energy with layer thickness, part geometry and part 
orientation. Energy demands of the curing and sintering step 
should be included in the study in order to quantify the total 
environmental impact of the process.  

Kellens et al. developed a parametric process model to 
estimate the environmental impact of powder bed fusion 
processes using selective laser sintering technology with 
PA2200 and PA3200GF polymer materials [18]. The models 
are based on the volume and the total build height of the part. 
Their models estimated total electrical energy and resource 
consumption as well as the environmental impact [19].  

Yosofi et al. presented a method which makes it possible to 
obtain energy models for AM processes [20]. For a high 
precision energy consumption prediction, they divided the 
manufacturing process into different stages and obtain the 
energy consumption of each stage through experiment with an 
accuracy of +/-10%. They applied their methodology on 
multiple AM processes: material extrusion, material jetting 
and powder bed fusion [21].  

These studies have improved knowledge around the 
environmental footprints of AM. However, there is still a lack 
of information for some processes. Indeed, more research 
must be done in order to fulfill the life cycle inventory 
database for AM. Nevertheless, it is possible to predict 
information thanks to parametric models and therefore to 
make a choice of process or machine. However, making a 
choice of process from an environmental point of view is not 
representative of the industry. Indeed, choosing a process 
rather than another in the industrial sector is mainly governed 
by the feasibility and the cost price. That is why it is important 
to combine environment information with technical and 
economic information.  

AM techniques have been applied in various domains, such 
as the aerospace, automotive and biomedical industries. 
Nowadays, many works can be found on the mechanical 
properties of the parts made by AM processes. The first 
studies were focused on the influence of processes parameters 
on the flexural properties [22]-[25]. These studies led to work 
on improving these processes by reducing build time [26], 
material consumption and part weight [27]. Many authors 
have developed predictive models to determine the mechanical 
properties before the part production. Carneiro et al. 
developed a parametric model to estimate the tensile strength 
of ABS parts made by material extrusion processes [28]. Other 
studies on ABS can be found in [29]-[32]. Since the main 
defect of these processes is poor surface condition, Boschetto 
et al. developed parametric models of surface quality 
indicators in order to predict the surface roughness of parts 
made by the material extrusion process [33], [34].  

Cost estimation for AM processes has evolved from rather 
crude initial models [35] to more accurate estimates [36]. The 
late models tend to consider all the activities involved in AM 

in order to calculate the full cost of a finished part [37].  
All this work on improving these processes is a sign of the 

latter’s technical and economic maturity. Some authors work 
on the linkage between technical and cost criteria [38] or 
environmental and cost criteria [39]. However, more research 
needs to be done in order to continue in multicriteria 
evaluation of AM processes [40]. 

This paper therefore presents predictive models using a 
methodology in order to evaluate three material extrusion 
machines from a technical, economic and environmental point 
of view. The remainder of this paper is divided into three 
sections. Section II describes the current status of the state of 
the art regarding the multicriteria evaluation of AM processes. 
Section III explains the methodology used in this study. 
Finally, Section IV presents the application of the 
methodology on a use case. 

II. METHODOLOGY 

The applied methodology, described in detail by Yosofi et 
al. [40], consists to evaluate AM processes from a technical, 
economic and environmental point of view (Fig. 1). Its 
purpose is to enable manufacturers to choose between 
different manufacturing processes or machines based on 
multiple criteria. The methodology is decomposed of two 
major steps. First, all the data needed to create the models are 
collected. The authors proposed accurate models, leveraged on 
experimental measurements for the electrical energy 
consumption. They break down the process into different 
manufacturing stages to make a power study of each stage. 
Subsequently, a time study is performed in order to calculate 
the total electrical energy consumption. Simple models are 
presented regarding fluid and material consumption. Empirical 
formulae for cost models and equations for the technical 
model are extracted from the literature. These models allow 
consumption flows to be predicted for parts of any shape. 

Once all the different data have been acquired, either 
directly from the literature or the process, it is possible to 
create the different predictive models related to the technical 
characteristics, cost, and inventory data of the machine used. 
All the acquired data are entered in a numerical tool developed 
in Visual Basic Application (VBA). The models can be used 
by entering the following data provided by the CAD or slicing 
software: 
‐ Layer height; 
‐ Manufacturing angles; 
‐ Preprocess duration; 
‐ Postprocess duration; 
‐ Part volume; 
‐ Density of material used. 

Finally in step two, the different consumption flows are 
simultaneously displayed in a single graph. More information 
about the experimental protocol and method for obtaining the 
different models are available in [21]. In this paper, the 
methodology has been applied on three machines of the 
material extrusion process:  
‐ Prusa i3 MK3S 
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‐ Ultimaker 3 
‐ Ultimaker 2 Go 

 

 

Fig. 1 The two steps of the methodology 

III. RESULT AND DISCUSSION 

The evaluation of AM processes focused on consumption 
(inventory data) during the part manufacturing. In the case of 
AM processes, the flows are split into three categories: 
‐ Electrical energy, 
‐ Material consumption, 
‐ Compressed air and water consumption and waste. 

The methodology does not take the machine’s particle 
emissions into account nor does it consider the material and 
energy used to manufacture the machine tool, material, part, or 
machine tool recycling. However all the data on this 
consumption should be considered in any lifecycle analysis. 

A. Machines Studied  

The methodology has been applied on three material 
extrusion machines. The Prusa I3 MK3S, the Ultimaker 3 and 

the Ultimaker 2 Go. Fig. 2 shows the three machines studied.  
 

 

Fig. 2 Machines studied 

B. Parametric Model of the Electrical Energy Consumption 

Breaking the process down into its various stages makes it 
possible to have a generic formula for the total consumption of 
electrical energy during the production of a part (1). The total 
electrical energy consumption is equal to the sum of the 
electrical energy consumed during each stage. 
 

𝐸𝑡𝑜𝑡𝑎𝑙
𝐸 𝐼𝑑𝑙𝑖𝑛𝑔 𝐸 𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝐸𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (1) 

 
where EIdling is the electrical energy associated with the 
idling stage, EPreparation is the electrical energy associated 
with the preparation stage, EForming is the electrical energy 
associated with the forming stage, and EPostprocess is the 
electrical energy associated with the postprocess stage. 
Electrical energy measurements are performed with an energy 
analyzer (Voltracft 4000f). 

Table I shows the measured average power and average 
duration of each stage of each machine.  

 
TABLE I 

AVERAGE POWER AND DURATION OF EACH STAGE 

Machine 
PIdling (W) PPlate preparation 

(W) 
PPlate temp 

maintenance (W) 
PHead preparation 

(W) 
PHead temp 

maintenance (W) 
PForming (W) TPlate preparation (s) THead preparation (s) 

Prusa i3 MK3S 8.10 146.6 34.7 25.1 11.6 48.6 124.2 78.0 
Ultimaker 3 5.31 139 47.8 16.6 1.37 35.0 181.1 76.9 

Ultimaker 2 Go 4.25 0.0 0.0 58.8 0.0 74.8 0.00 67.8 

 

Table II presents the parametric electrical energy models for 
the three machines. In this table, TPreparation is the sum of TPlate 
preparation and THead preparation. TTotal is total duration estimated by 
the slicing software.  

 
TABLE II 

PARAMETRIC MODELS OF THE ELECTRICAL ENERGY CONSUMPTION OF EACH 

MACHINE 

Machine Electrical Energy Consumption 

Prusa i3 MK3S 
𝐸𝑡𝑜𝑡𝑎𝑙 8.10 𝑥 𝑇𝑡𝑜𝑡𝑎𝑙 146.6 𝑥 124.2
25.1 𝑥 78 34.7 11.6 48.6  𝑥 𝑇𝑡𝑜𝑡𝑎𝑙

𝑇𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛   

Ultimaker 3 
𝐸𝑡𝑜𝑡𝑎𝑙 5.31 𝑥 𝑇𝑡𝑜𝑡𝑎𝑙 139 𝑥 181.1
16.7 𝑥 76.9 47.8 1.37 35  𝑥 𝑇𝑡𝑜𝑡𝑎𝑙

𝑇𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛   

Ultimaker 2 Go 
𝐸𝑡𝑜𝑡𝑎𝑙 4.25 𝑥 𝑇𝑡𝑜𝑡𝑎𝑙 58.8 𝑥 67.8
 74.8 𝑥 𝑇𝑡𝑜𝑡𝑎𝑙 𝑇𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛   

 

C. Parametric Models for Resource Consumption  

An empirical equation (2) is used to predict the total amount 
of material used during the process. The total material 
consumption is the sum of the materials needed for the part 
and the support.  
 

𝑀𝑡𝑜𝑡𝑎𝑙 ρPart 𝑥 𝑉𝑃𝑎𝑟𝑡 ρSupport 𝑥 𝑉𝑆𝑢𝑝𝑝𝑜𝑟𝑡  (2) 
        

where ρPart is the material density of the part, VPart is the 
volume of the part, ρSupport is the material density of the 
support, and VSupport the volume of the support. For these 
studied machines, there is no need of fluid consumption. 
Support material is removed manually from the part. 

D. Technical and Economic Model 

Technical model to predict the arithmetic roughness is the 
same used by Yosofi et al. [20]. However, for the economic 

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:15, No:2, 2021 

88International Scholarly and Scientific Research & Innovation 15(2) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

2,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

83
8.

pd
f



 

 

model, we consider also the price of the electrical 
consumption that is 0.15 Euros/kWh.  

Fig. 3 presents the studied part of 105 x 100 x 55 mm made 
in PLA polymer. This part represents a support for the surgical 
mask to move the mask away from the mouth. This part 
requires more support material than the part himself. The 
manufacturing angle of the top of the part is 90°.  

 

 

Fig. 3 COVID mask 

E. Results 

In order to compute all information about the different 
models obtained by data measurements or extracted from the 
literature, we designed a numerical tool. It allows the user to 
enter initial data and compare the results for each pair of 
machines in order to determine quickly the best one that suits 
them. 

Table III shows the input values for the part studied. All the 
information is obtained thanks to the CAD and slicing 
software. Table IV indicates the estimated values by the 
models. 

 
TABLE III 

INPUT VALUES OF THE PART STUDIED 

Equipment Part 
Layer 
High 
(mm) 

Infill 
(%) 

Part 
volume 
(cm3) 

Support 
volume 
(cm3) 

Estimated 
time 
(min) 

Real 
time 
(min) 

Prusa i3 
MK3S 

COVID 
mask 

0.3 

100 

10.4 14.6 238 253 

Ultimaker 
3 

0.2 11.2 6.4 183 172 

Ultimaker 
2 Go 

0.2 11.2 6.4 127 127 

 
TABLE VI 

OUTPUT VALUES (ESTIMATED VALUES) 

Equipment 
Energy 
(Wh) 

Cost 
(euros) 

Ra 
(µm) 

Part 
weight 

(g) 

Support 
weight (g) 

SEC 
(kWh/kg) 

Prusa 
i3mk3s 

406 4.01 25.6 13.1 17.8 13.1 

Ultimaker 3 248 6.79 17.2 14 8 11.3 
Ultimaker 2 

Go 
169 3.41 17.2 14 8 7.7 

 

Table V shows the estimated and the real values of the 
electrical energy consumption with de deviation for each 
machine. 

Fig. 4 illustrates the combination of the estimated results for 
the three material extrusion machines. To have an exploitable 
result curve, we created a system of value scaling by 

calculating the percentage of each result related to the largest. 
Since the part studied is the same for the three machines, 
material consumption and arithmetic roughness are also the 
same.  

 
TABLE V 

DEVIATION BETWEEN ESTIMATED AND REAL ENERGY CONSUMPTION 

Equipment 
Estimated Energy 
consumption (Wh) 

Real energy 
consumption (Wh) 

Deviation 
(%) 

Prusa i3mk3s 406 385 5 
Ultimaker 3 248 223 10 

Ultimaker 2 Go 169 153 8 
 

 

Fig. 4 Estimated results of the three machines 

F. Discussion 

Recording the energy consumption of the manufacturing 
process stage by stage, over several cycles of repetition made 
it possible to gain accurate models of electrical energy 
consumption. We measured the electrical energy consumption 
during the manufacturing of the part and the deviation 
between the model and measured values, as shown in Table V. 
We observe that deviation for the Prusa i3 MK3S and the 
Ultimaker 2 Go is less than 10%. The Ultimaker 3 has a 
deviation of 10% between the two electrical energy values. 
These deviations are due to the precision of the measuring 
device which has an impact on the precision of the models and 
in addition to the difference between the estimated time and 
the real manufacturing time. This way of presenting the results 
(Fig. 4) enables a user to make a choice of machine or process 
according to the criteria he wishes to highlight.  

From an environmental point of view, the Ultimaker 2 Go is 
the ideal machine because it consumes less energy and support 
material. The difference of part weight between the two 
Ultimaker machines and the Prusa machine is 0.9 grams, 
which is negligible. This part made by the Ultimaker 2 Go will 
cost less than the other two.  

Finally, the arithmetic roughness for the two Ultimaker 
machines is lower than the Prusa i3 MK3S. We can conclude 
that for this specific part, the ideal machine is the Ultimaker 2 
Go. However, in order to have a more accurate study, it would 
be interesting to have a part quality indicator. Indeed, in our 
case, the model estimates that the Ultimaker 2 Go is the more 
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appropriate solution. Nevertheless, parts printed with this 
machine have the poorest visual appearance of the three. Thus, 
future work will focus on adding indicators to support decision 
making, the study of other materials and include more 
technical indicators (yield strength, tensile strength). 

IV. CONCLUSION 

In this paper, the authors propose a technical, economic and 
environmental evaluation of three machines of the material 
extrusion process. The methodology used is based on both 
analytic models (validated by experiments) and experimental 
models. The work concerning the inventory data is not only 
focused on electrical consumption but also on resources 
consumption which also contributes to the environmental 
impact. These environmental aspects are then coupled with 
technical and cost properties in order to have a multicriteria 
evaluation allowing a user to have a global view of the 
consumption of a part according to its geometry. Furthermore, 
this methodology will be extended to other materials for the 
three machines studied, and more models will be investigated 
in order to evaluate these processes with new indicators. 

ACKNOWLEDGMENT 

The authors would like to thanks Pierre Gabas, Julie 
Suzanne, Jules Woodcock and Jean-François Lemaire for their 
work on the data acquisition.  

REFERENCES  
[1] Lee JY, An J, Chua CK, Fundamentals and applications of 3D printing 

for novel materials. Appl Mater Today, 7:120–133, 2017. 
[2] Fahad M, Hopkinson N, Evaluation and comparison of geometrical 

accuracy of parts produced by sintering-based additive manufacturing 
processes. Int J Adv Manuf Technol 88(9–12): 3389–3394, 2017. 

[3] Costabile G, Fera M, Fruggiero F, Lambiase A, Pham D, Cost models of 
additive manufacturing: a literature review. Int J Ind Eng Comput 
8:263–282, 2017. 

[4] Kellens, K, Baumers, M, Gutowski, T G., Flanagan, W, Lifset, R, 
Duflou, J, Environmental Dimensions of Additive Manufacturing: 
Mapping Application Domains and Their Environmental Implications. J 
of Ind Ecology 21 : 49 :68, 2017. 

[5] Luo, Y. L. Y., Ji, Z. J. Z., Leu, M. C. and Caudill, R, Environmental 
performance analysis of solid freedom fabrication processes, 
Proceedings of the 1999 IEEE International Symposium on Electronics 
and the Environment, 1999. 

[6]  Luo, Y., Leu, M. C. and Ji, Z, Assessment of environmental 
performance of rapid prototyping and rapid tooling processes, Solid 
Freeform Fabrication Symposium, pp. 783–792, 1999.  

[7] Mognol, P., Lepicart, D. and Perry, N, Rapid prototyping: energy and 
environment in the spotlight, Rapid Prototyping Journal, 12 (1), pp. 26–
34, 2006. 

[8] Baumers, M., Tuck, C., Hague, R., Ashcroft, I. and Wildman, R, A 
comparative study of metallic additive manufacturing power 
consumption, Solid Freeform Fabrication Symposium, pp. 278–288. 
2010. 

[9] Baumers, M., Tuck, C., Wildman, R., Ashcroft, I. and Hague, R, Energy 
inputs to additive manufacturing: Does capacity utilization matter?, 
Solid Freeform Fabrication Symposium, pp. 30–40, 2010. 

[10] Junk, S. and Côté, S, A practical approach to comparing energy 
effectiveness of rapid prototyping technologies, Proceedings of 
AEPR’12, (June), pp. 12–14 2009.  

[11] Junk, S. and Côté, S, Influencing variables on sustainability in additive 
manufacturing. Offenburg - Germany: Helena Bartolo, 2013. 

[12] Sreenivasan, R. and Bourell, D. L, Sustainability study in selective laser 
sintering – An energy perspective, Solid Freeform Fabrication 
Symposium, pp. 257–265, 2009. 

[13] Balogun, V. A., Kirkwood, N. D. and Mativenga, P. T, Direct Electrical 
Energy Demand in Fused Deposition Modelling, Procedia CIRP, 15, pp. 
38–43, 2014. 

[14] Le, V. T. and Paris, H, Impact of Total Build Height and Batch Size on 
Environmental Performance of Electron Beam Melting, Procedia CIRP. 
The Author(s), 69(May), pp. 112–117, 2018. 

[15] Baumers, M., C. Tuck, R. Wildman, I. Ashcroft, E. Rosamond, and R. 
Hague, Transparency built-in. Energy consumption and cost estimation 
for additive manufacturing. Journal of Industrial Ecology 17(3): 418–
431 2012. 

[16] Le Bourhis, F., O. Kerbrat, J.-Y. Hascoet, and P. Mognol, Sustain- able 
manufacturing: Evaluation and modeling of environmental impacts in 
additive manufacturing. The International Journal of Advanced 
Manufacturing Technology 69(9): 1927–1939, 2013. 

[17] Xu, X., S. Meteyer,N. Perry, and Y. F. Zhao, Energy consumption 
model of binder-jetting AM processes. International Journal of 
Production Research, 2014. 

[18] Kellens, K., E. Yasa, Renaldi, W. Dewulf, J. P. Kruth, and J. R. Duflou, 
Energy and resource efficiency of SLS/SLM processes. In Proceedings 
of the 22nd Solid Freeform Fabrication Symposium, 8–10 August, 
Austin, TX, USA, 1–16, 2011a 

[19] Kellens, K., Renaldi, W. Dewulf, J. P. Kruth, and J. R. Duflou, 
Environmental impact modeling of selective laser sintering pro- cesses. 
Rapid Prototyping Journal 20(6): 459–470, 2014. 

[20] M. Yosofi, O. Kerbrat, P. Mognol, Energy and material flow modelling 
of additive manufacturing processes, Virtual Phys. Prototyp. 2018, 13, 
83. 

[21] Yosofi, M.; Kerbrat, O.; Mognol, P. Additive manufacturing processes 
from an environmental point of view: A new methodology for 
combining technical, economic, and environmental predictive models. 
Int. J. Adv. Manuf. Technol. 2019, 102, 4073–4085. 

[22] Motaparti KP, Taylor G, Leu MC, Chandrashekhara K, Castle J, 
Matlack M, Experimental investigation of effects of build parameters on 
flexural properties in fused deposition modelling parts. Virtual Phys 
Prototyp 12(3):207–220, 2017. 

[23] Kim GD, Oh YT, A benchmark study on rapid prototyping processes 
and machines: quantitative comparisons of mechanical properties, 
accuracy, roughness, speed, and material cost. Proc Inst Mech Eng B J 
Eng Manuf 222(2):201–215, 2008. 

[24] Byun HS, Lee KH, Determination of the optimal build direction for 
different rapid prototyping processes using multicriterion decision 
making. Robot Comput Integr Manuf 22(1):69– 80, 2006. 

[25] Strano G, Hao L, Everson RM, Evans KE, Multi-objective optimization 
of selective laser sintering processes for surface quality and energy 
saving. Proc Inst Mech Eng B J Eng Manuf 225(9):1673–1682, 2007. 

[26] Teitelbaum GA, Schmidt LC, Goaer Y, Examining potential design 
guidelines for use in fused deposition modeling to reduce build time and 
material volume. Int Des Eng Tech Conf Comput Inf Eng Conf 8:1–10, 
2009. 

[27] Kranz J, Herzog D, Emmelmann C, Design guidelines for laser additive 
manufacturing of lightweight structures in TiAl6V4. J Laser Appl 
27(S14001):1–16, 2015.  

[28] O. S. Carneiro, A. F. Silva, et R. Gomes, « Fused deposition modeling 
with polypropylene », Mater. Des., vol. 83, p. 768‑776, oct. 2015, 

[29] « Rayegani et Onwubolu - 2014 - Fused deposition modelling (FDM) 
process parameter.pdf ». 

[30] M. Montero, S. Roundy, D. Odell, S.-H. Ahn, et P. K. Wright, 
« Material Characterization of Fused Deposition Modeling (FDM) ABS 
by Designed Experiments », p. 21, 2001. 

[31] M. Raju, M. K. Gupta, N. Bhanot, et V. S. Sharma, « A hybrid PSO–
BFO evolutionary algorithm for optimization of fused deposition 
modelling process parameters », J. Intell. Manuf., vol. 30, no 7, p. 
2743‑2758, oct. 2019 

[32] A. K. Sood, R. K. Ohdar, et S. S. Mahapatra, « Parametric appraisal of 
mechanical property of fused deposition modelling processed parts », 
Mater. Des., vol. 31, no 1, p. 287‑295, janv. 2010 

[33] Boschetto A, Giordano V, Veniali F, Modelling micro geometrical 
profiles in fused deposition process. Int J Adv Manuf Technol 61(9–
12):945–956, 2011. 

[34] Boschetto A, Giordano V, Veniali F, Surface roughness prediction in 
fused depositionmodelling by neural networks. Int J Adv Manuf Technol 
67(9–12):2727–2742, 2013. 

[35] Hopkinson N, Dickens P, Analysis of rapid manufacturing - using layer 
manufacturing processes for production. Proc InstMech Eng Part C J 
Mech Eng Sci 217(1):31–40, 2003. 

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:15, No:2, 2021 

90International Scholarly and Scientific Research & Innovation 15(2) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

2,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

83
8.

pd
f



 

 

[36] BaumersM, Tuck C,Wildman R, Ashcroft, I., Rosamond E, Hague R, 
Combined build-time, energy consumption and cost estimation for direct 
metal laser sintering. Proc of the Solid Freeform Fabrication 
Symposium, Austin, USA, pp 278–288, 2012.  

[37] Manogharan G, Wysk RA, Harrysson OLA, Additive manufacturing-
integrated hybrid manufacturing and subtractive processes: economic 
model and analysis. Int J Comput Integr Manuf 29(5):473–488, 2016. 

[38] Durgun I, Ertan R, Experimental investigation of FDM process for 
improvement ofmechanical properties and production cost. Rapid 
Prototyp J 20(3):228–23.5, 2016.  

[39] C. Hodonou , O. Kerbrat, M. Balazinski1, M. Brochu, Process selection 
charts based on economy and environment: subtractive or additive 
manufacturing to produce structural components of aircraft. Int J Int des 
manuf. 14, 861–873, 2020.  

[40] Yosofi, M.; Kerbrat, O.; Mognol, P. Framework to Combine Technical, 
Economic and Environmental Points of View of Additive Manufacturing 
Processes. Procedia CIRP 2018, 69, 118–123. 
 

 
 
 

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:15, No:2, 2021 

91International Scholarly and Scientific Research & Innovation 15(2) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

2,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

83
8.

pd
f


