Search results for: Doubly Complementary Filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 802

Search results for: Doubly Complementary Filter

142 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
141 Aliveness Detection of Fingerprints using Multiple Static Features

Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim

Abstract:

Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.

Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
140 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network

Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman

Abstract:

Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.

Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141
139 Analysis of Entrepreneurship in Industrial Cluster

Authors: Wen-Hsiang Lai

Abstract:

Except for the internal aspects of entrepreneurship (i.e.motivation, opportunity perspective and alertness), there are external aspects that affecting entrepreneurship (i.e. the industrial cluster). By comparing the machinery companies located inside and outside the industrial district, this study aims to explore the cluster effects on the entrepreneurship of companies in Taiwan machinery clusters (TMC). In this study, three factors affecting the entrepreneurship in TMC are conducted as “competition”, “embedded-ness” and “specialized knowledge”. The “competition” in the industrial cluster is defined as the competitive advantages that companies gain in form of demand effects and diversified strategies; the “embedded-ness” refers to the quality of company relations (relational embedded-ness) and ranges (structural embedded-ness) with the industry components (universities, customers and complementary) that affecting knowledge transfer and knowledge generations; the “specialized knowledge” shares theinternal knowledge within industrial clusters. This study finds that when comparing to the companieswhich are outside the cluster, the industrial cluster has positive influence on the entrepreneurship. Additionally, the factor of “relational embedded-ness” has significant impact on the entrepreneurship and affects the adaptation ability of companies in TMC. Finally, the factor of “competition” reveals partial influence on the entrepreneurship.

Keywords: Entrepreneurship, Industrial Cluster, Industrial District, Economies of Agglomerations, Taiwan Machinery Cluster (TMC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
138 Immunity of Integrated Drive System, Effects of Radiated and Conducted Emission

Authors: M. Ektesabi

Abstract:

In this paper the problems associated with immunity of embedded systems used in Motor-Drive systems are investigated and appropriate solutions are presented. Integration of VSD motor systems (Integral Motor) while partially reducing some of these effects, adds to immunity problem of their embedded systems. Fail safe operation of an Integral Motor in arduous industrial environments is considered. In this paper an integral motor with a unique design is proposed to overcome critical issues such as heat, vibration and electromagnetic interference which are damaging to sensitive electronics without requirement of any additional cooling system. Advantages of the proposed Integral motor are compactness of combo motor and drive system with no external cabling/wiring. This motor provides a perfect shielding for least amount of radiated emission. It has an inbuilt filter for EMC compliance and has been designed to provide lower EMC noise for immunity of the internal electronics as well as the other neighbouring systems.

Keywords: Electromagnetic Interference, Immunity, IntegralMotor, Radiated & Conducted Emission, Sensitive Electronics, Variable Speed Drive

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
137 Peakwise Smoothing of Data Models using Wavelets

Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan

Abstract:

Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.

Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
136 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
135 Designing Social Care Policies in the Long Term: A Study Using Regression, Clustering and Backpropagation Neural Nets

Authors: Sotirios Raptis

Abstract:

Linking social needs to social classes using different criteria may lead to social services misuse. The paper discusses using ML and Neural Networks (NNs) in linking public services in Scotland in the long term and advocates, this can result in a reduction of the services cost connecting resources needed in groups for similar services. The paper combines typical regression models with clustering and cross-correlation as complementary constituents to predict the demand. Insurance companies and public policymakers can pack linked services such as those offered to the elderly or to low-income people in the longer term. The work is based on public data from 22 services offered by Public Health Services (PHS) Scotland and from the Scottish Government (SG) from 1981 to 2019 that are broken into 110 years series called factors and uses Linear Regression (LR), Autoregression (ARMA) and 3 types of back-propagation (BP) Neural Networks (BPNN) to link them under specific conditions. Relationships found were between smoking related healthcare provision, mental health-related health services, and epidemiological weight in Primary 1(Education) Body Mass Index (BMI) in children. Primary component analysis (PCA) found 11 significant factors while C-Means (CM) clustering gave 5 major factors clusters.

Keywords: Probability, cohorts, data frames, services, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460
134 Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible

Authors: Achim Kampker, Kai Kreiskoether, Johannes Wagner, Sarah Fluchs

Abstract:

The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general.

Keywords: Automotive assembly, e-mobility, production technology, small series assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
133 An Online Space for Practitioners in the Water, Sanitation and Hygiene Sector

Authors: Olivier Mills, Bernard McDonell, Laura A. S. MacDonald

Abstract:

The increasing availability and quality of internet access throughout the developing world provides an opportunity to utilize online spaces to disseminate water, sanitation and hygiene (WASH) knowledge to practitioners. Since 2001, CAWST has provided in-person education, training and consulting services to thousands of WASH practitioners all over the world, supporting them to start, troubleshoot, improve and expand their WASH projects. As CAWST continues to grow, the organization faces challenges in meeting demand from clients and in providing consistent, timely technical support. In 2012, CAWST began utilizing online spaces to expand its reach by developing a series of resources websites and webinars. CAWST has developed a WASH Education and Training resources website, a Biosand Filter (BSF) Knowledge Base, a Household Water Treatment and Safe Storage Knowledge Base, a mobile app for offline users, a live chat support tool, a WASH e-library, and a series of webinar-style online training sessions to complement its in-person capacity development services. In order to determine the preliminary outcomes of providing these online services, CAWST has monitored and analyzed registration to the online spaces, downloads of the educational materials, and webinar attendance; as well as conducted user surveys. The purpose of this analysis was to find out who was using the online spaces, where users came from, and how the resources were being used. CAWST’s WASH Resources website has served over 5,800 registered users from 3,000 organizations in 183 countries. Additionally, the BSF Knowledge Base has served over 1000 registered users from 68 countries, and over 540 people from 73 countries have attended CAWST’s online training sessions. This indicates that the online spaces are effectively reaching a large numbers of users, from a range of countries. A 2016 survey of the Biosand Filter Knowledge Base showed that approximately 61% of users are practitioners, and 39% are either researchers or students. Of the respondents, 46% reported using the BSF Knowledge Base to initiate a BSF project and 43% reported using the information to train BSF technicians. Finally, 61% indicated they would like even greater support from CAWST’s Technical Advisors going forward. The analysis has provided an encouraging indication that CAWST’s online spaces are contributing to its objective of engaging and supporting WASH practitioners to start, improve and expand their initiatives. CAWST has learned several lessons during the development of these online spaces, in particular related to the resources needed to create and maintain the spaces, and respond to the demand created. CAWST plans to continue expanding its online spaces, improving user experience of the sites, and involving new contributors and content types. Through the use of online spaces, CAWST has been able to increase its global reach and impact without significantly increasing its human resources by connecting WASH practitioners with the information they most need, in a practical and accessible manner. This paper presents on CAWST’s use of online spaces through the CAWST-developed platforms discussed above and the analysis of the use of these platforms.

Keywords: Education and training, knowledge sharing, online resources, water and sanitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
132 Joint Microstatistic Multiuser Detection and Cancellation of Nonlinear Distortion Effects for the Uplink of MC-CDMA Systems Using Golay Codes

Authors: Peter Drotar, Juraj Gazda, Pavol Galajda, Dusan Kocur

Abstract:

The study in this paper underlines the importance of correct joint selection of the spreading codes for uplink of multicarrier code division multiple access (MC-CDMA) at the transmitter side and detector at the receiver side in the presence of nonlinear distortion due to high power amplifier (HPA). The bit error rate (BER) of system for different spreading sequences (Walsh code, Gold code, orthogonal Gold code, Golay code and Zadoff-Chu code) and different kinds of receivers (minimum mean-square error receiver (MMSE-MUD) and microstatistic multi-user receiver (MSF-MUD)) is compared by means of simulations for MC-CDMA transmission system. Finally, the results of analysis will show, that the application of MSF-MUD in combination with Golay codes can outperform significantly the other tested spreading codes and receivers for all mostly used models of HPA.

Keywords: HPA, MC-CDMA, microstatistic filter, multi-user receivers, PAPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
131 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications

Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi

Abstract:

The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.

Keywords: Thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, embedded systems, energy harvesting, thermal harvesting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
130 Effectiveness of Contourlet vs Wavelet Transform on Medical Image Compression: a Comparative Study

Authors: Negar Riazifar, Mehran Yazdi

Abstract:

Discrete Wavelet Transform (DWT) has demonstrated far superior to previous Discrete Cosine Transform (DCT) and standard JPEG in natural as well as medical image compression. Due to its localization properties both in special and transform domain, the quantization error introduced in DWT does not propagate globally as in DCT. Moreover, DWT is a global approach that avoids block artifacts as in the JPEG. However, recent reports on natural image compression have shown the superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks, compared to DWT. It is mostly due to the optimality of contourlet in representing the edges when they are smooth curves. In this work, we investigate this fact for medical images, especially for CT images, which has not been reported yet. To do that, we propose a compression scheme in transform domain and compare the performance of both DWT and contourlet transform in PSNR for different compression ratios (CR) using this scheme. The results obtained using different type of computed tomography images show that the DWT has still good performance at lower CR but contourlet transform performs better at higher CR.

Keywords: Computed Tomography (CT), DWT, Discrete Contourlet Transform, Image Compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
129 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
128 Air Pollution Control from Rice Shellers - A Case Study

Authors: S. M. Ahuja

Abstract:

A Rice Sheller is used for obtaining polished white rice from paddy. There are about 3000 Rice Shellers in Punjab and 50000 in India. During the process of shelling lot of dust is emitted from different unit operations like paddy silo, paddy shaker, bucket elevators, huskers, paddy separator etc. These dust emissions have adverse effect on the health of the workers and the wear and tear of the shelling machinery is fast. All the dust emissions spewing out of these unit operations of a rice Sheller were contained by providing suitable hoods and enclosures while ensuring their workability. These were sucked by providing an induced draft fan followed by a high efficiency cyclone separator that has got an overall dust collection efficiency of more than 90%. This cyclone separator replaced two cyclone separators and a filter bag house, which the Rice Sheller was already having. The dust concentration in the stack after the installation of cyclone separator is well within the stipulated standards. Besides controlling pollution, there is improvement in the quality of products like bran and the life of shelling machinery has enhanced. The payback period of this technology is less than four shelling months.

Keywords: Air Pollution, Cyclone Separator, Pneumatic Conveying, Rice Sheller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3373
127 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: Diabetic retinopathy, fundus, CHT, exudates, hemorrhages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
126 Research Topic Map Construction

Authors: Hei-Chia Wang, Che-Tsung Yang

Abstract:

While the explosive increase in information published on the Web, researchers have to filter information when searching for conference related information. To make it easier for users to search related information, this paper uses Topic Maps and social information to implement ontology since ontology can provide the formalisms and knowledge structuring for comprehensive and transportable machine understanding that digital information requires. Besides enhancing information in Topic Maps, this paper proposes a method of constructing research Topic Maps considering social information. First, extract conference data from the web. Then extract conference topics and the relationships between them through the proposed method. Finally visualize it for users to search and browse. This paper uses ontology, containing abundant of knowledge hierarchy structure, to facilitate researchers getting useful search results. However, most previous ontology construction methods didn-t take “people" into account. So this paper also analyzes the social information which helps researchers find the possibilities of cooperation/combination as well as associations between research topics, and tries to offer better results.

Keywords: Ontology, topic maps, social information, co-authorship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
125 Detecting and Tracking Vehicles in Airborne Videos

Authors: Hsu-Yung Cheng, Chih-Chang Yu

Abstract:

In this work, we present an automatic vehicle detection system for airborne videos using combined features. We propose a pixel-wise classification method for vehicle detection using Dynamic Bayesian Networks. In spite of performing pixel-wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. The main novelty of the detection scheme is that the extracted combined features comprise not only pixel-level information but also region-level information. Afterwards, tracking is performed on the detected vehicles. Tracking is performed using efficient Kalman filter with dynamic particle sampling. Experiments were conducted on a wide variety of airborne videos. We do not assume prior information of camera heights, orientation, and target object sizes in the proposed framework. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging dataset.

Keywords: Vehicle Detection, Airborne Video, Tracking, Dynamic Bayesian Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
124 The Southwestern Bangladesh’s Experience of Tidal River Management: An Analysis of Effectiveness and Challenges

Authors: Md. SajadulAlam, I. Ahmed, A. Naqib Jimmy, M. Haque Munna, N. Ahsan Khan

Abstract:

The construction of coastal polders to reduce salinity ingress at greater Khulna-Jashore region area was initiated in the 1960s by Bangladesh Water Development Board (BWDB). Although successful in a short run the, the Coastal Embankment Project (CEP) and its predecessors are often held accountable for the entire ecological disasters that affected many people. To overcome the water-logging crisis the first Tidal River Management (TRM) at Beel Bhaiana, Bhabodaho was implemented by the affected local people in an unplanned. TRM is an eco-engineering, low cost and participatory approach that utilizes the natural tidal characteristics and the local community’s indigenous knowledge for design and operation of watershed management. But although its outcomes were overwhelming in terms of reducing water-logging, increasing navigability etc. at Beel Bhaina the outcomes of its consequent schemes were debatable. So this study aims to examine the effectiveness and impact of the TRM schemes. Primary data were collected through questionnaire survey, Focus Group Discussion (FGD) and Key Informant Interview (KII) so as to collect mutually complementary quantitative and qualitative information along with extensive literature review. The key aspects that were examined include community participation, community perception on effectiveness and operational challenges.

Keywords: Sustainable, livelihood, salinity, water-logging, shrimp fry collectors, coastal region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
123 An Improved Quality Adaptive Rate Filtering Technique Based on the Level Crossing Sampling

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

Mostly the systems are dealing with time varying signals. The Power efficiency can be achieved by adapting the system activity according to the input signal variations. In this context an adaptive rate filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by following the input signal local variations. Thus, it correlates the processing activity with the signal variations. Interpolation is required in the proposed technique. A drastic reduction in the interpolation error is achieved by employing the symmetry during the interpolation process. Processing error of the proposed technique is calculated. The computational complexity of the proposed filtering technique is deduced and compared to the classical one. Results promise a significant gain of the computational efficiency and hence of the power consumption.

Keywords: Level Crossing Sampling, Activity Selection, Rate Filtering, Computational Complexity, Interpolation Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
122 VLSI Design of 2-D Discrete Wavelet Transform for Area-Efficient and High-Speed Image Computing

Authors: Mountassar Maamoun, Mehdi Neggazi, Abdelhamid Meraghni, Daoud Berkani

Abstract:

This paper presents a VLSI design approach of a highspeed and real-time 2-D Discrete Wavelet Transform computing. The proposed architecture, based on new and fast convolution approach, reduces the hardware complexity in addition to reduce the critical path to the multiplier delay. Furthermore, an advanced twodimensional (2-D) discrete wavelet transform (DWT) implementation, with an efficient memory area, is designed to produce one output in every clock cycle. As a result, a very highspeed is attained. The system is verified, using JPEG2000 coefficients filters, on Xilinx Virtex-II Field Programmable Gate Array (FPGA) device without accessing any external memory. The resulting computing rate is up to 270 M samples/s and the (9,7) 2-D wavelet filter uses only 18 kb of memory (16 kb of first-in-first-out memory) with 256×256 image size. In this way, the developed design requests reduced memory and provide very high-speed processing as well as high PSNR quality.

Keywords: Discrete Wavelet Transform (DWT), Fast Convolution, FPGA, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
121 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

Authors: Ahmed Badawi

Abstract:

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
120 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules

Authors: Mazidah Tajjudin, Mohd Hezri Fazalul Rahiman, Norhashim Mohd Arshad, Ramli Adnan

Abstract:

In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.

Keywords: PID controller, fractional-order PID controller, PI control tuning, steam temperature control, Ziegler-Nichols tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3470
119 Fabrication Characteristics and Mechanical Behavior of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (solid waste bye product of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4 and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement, estimated percentage porosity, tensile testing, micro hardness measurement and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was however superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: Fly ash, hybrid composite, mechanical behaviour, stir-cast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
118 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
117 Systematic Examination of Methods Supporting the Social Innovation Process

Authors: Mariann Veresne Somosi, Zoltan Nagy, Krisztina Varga

Abstract:

Innovation is the key element of economic development and a key factor in social processes. Technical innovations can be identified as prerequisites and causes of social change and cannot be created without the renewal of society. The study of social innovation can be characterised as one of the significant research areas of our day. The study’s aim is to identify the process of social innovation, which can be defined by input, transformation, and output factors. This approach divides the social innovation process into three parts: situation analysis, implementation, follow-up. The methods associated with each stage of the process are illustrated by the chronological line of social innovation. In this study, we have sought to present methodologies that support long- and short-term decision-making that is easy to apply, have different complementary content, and are well visualised for different user groups. When applying the methods, the reference objects are different: county, district, settlement, specific organisation. The solution proposed by the study supports the development of a methodological combination adapted to different situations. Having reviewed metric and conceptualisation issues, we wanted to develop a methodological combination along with a change management logic suitable for structured support to the generation of social innovation in the case of a locality or a specific organisation. In addition to a theoretical summary, in the second part of the study, we want to give a non-exhaustive picture of the two counties located in the north-eastern part of Hungary through specific analyses and case descriptions.

Keywords: Factors of social innovation, methodological combination, social innovation process, supporting decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
116 Programming Language Extension Using Structured Query Language for Database Access

Authors: Chapman Eze Nnadozie

Abstract:

Relational databases constitute a very vital tool for the effective management and administration of both personal and organizational data. Data access ranges from a single user database management software to a more complex distributed server system. This paper intends to appraise the use a programming language extension like structured query language (SQL) to establish links to a relational database (Microsoft Access 2013) using Visual C++ 9 programming language environment. The methodology used involves the creation of tables to form a database using Microsoft Access 2013, which is Object Linking and Embedding (OLE) database compliant. The SQL command is used to query the tables in the database for easy extraction of expected records inside the visual C++ environment. The findings of this paper reveal that records can easily be accessed and manipulated to filter exactly what the user wants, such as retrieval of records with specified criteria, updating of records, and deletion of part or the whole records in a table.

Keywords: Data access, database, database management system, OLE, programming language, records, relational database, software, SQL, table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
115 Expert Based System Design for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

Recently, an increasing number of researchers have been focusing on working out realistic solutions to sustainability problems. As sustainability issues gain higher importance for organisations, the management of such decisions becomes critical. Knowledge representation is a fundamental issue of complex knowledge based systems. Many types of sustainability problems would benefit from models based on experts’ knowledge. Cognitive maps have been used for analyzing and aiding decision making. A cognitive map can be made of almost any system or problem. A fuzzy cognitive map (FCM) can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behaviour of any system. Integrated waste management systems (IWMS) are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall decision process of the system. The goal of the present paper is to construct an efficient IWMS which considers various factors. The authors’ intention is to propose an expert based system design approach for implementing expert decision support in the area of IWMSs and introduces an appropriate methodology for the development and analysis of group FCM. A framework for such a methodology consisting of the development and application phases is presented.

Keywords: Factors, fuzzy cognitive map, group decision, integrated waste management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
114 Obsession of Time and the New Musical Ontologies: The Concert for Saxophone, Daniel Kientzy and Orchestra by Myriam Marbe

Authors: Luminiţa Duţică

Abstract:

For the music composer Myriam Marbe the musical time and memory represent 2 (complementary) phenomena with conclusive impact on the settlement of new musical ontologies. Summarizing the most important achievements of the contemporary techniques of composition, her vision on the microform presented in The Concert for Daniel Kientzy, saxophone and orchestra transcends the linear and unidirectional time in favour of a flexible, multivectorial speech with spiral developments, where the sound substance is auto(re)generated by analogy with the fundamental processes of the memory. The conceptual model is of an archetypal essence, the music composer being concerned with identifying the mechanisms of the creation process, especially of those specific to the collective creation (of oral tradition). Hence the spontaneity of expression, improvisation tint, free rhythm, micro-interval intonation, coloristictimbral universe dominated by multiphonics and unique sound effects, hence the atmosphere of ritual, however purged by the primary connotations and reprojected into a wonderful spectacular space. The Concert is a work of artistic maturity and enforces respect, among others, by the timbral diversity of the three species of saxophone required by the music composer (baritone, sopranino and alt), in Part III Daniel Kientzy shows the performance of playing two saxophones concomitantly. The score of the music composer Myriam Marbe contains a deeply spiritualized music, full or archetypal symbols, a music whose drama suggests a real cinematographic movement.

Keywords: Archetype, chronogenesis, concert, multiphonics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
113 Effect of Fuel Spray Angle on Soot Formation in Turbulent Spray Flames

Authors: K. Bashirnezhad, M. Moghiman, M. Javadi Amoli, F. Tofighi, S. Zabetnia

Abstract:

Results are presented from a combined experimental and modeling study undertaken to understand the effect of fuel spray angle on soot production in turbulent liquid spray flames. The experimental work was conducted in a cylindrical laboratory furnace at fuel spray cone angle of 30º, 45º and 60º. Soot concentrations inside the combustor are measured by filter paper technique. The soot concentration is modeled by using the soot particle number density and the mass density based acetylene concentrations. Soot oxidation occurred by both hydroxide radicals and oxygen molecules. The comparison of calculated results against experimental measurements shows good agreement. Both the numerical and experimental results show that the peak value of soot and its location in the furnace depend on fuel spray cone angle. An increase in spray angle enhances the evaporating rate and peak temperature near the nozzle. Although peak soot concentration increase with enhance of fuel spray angle but soot emission from the furnace decreases.

Keywords: Soot, spray angle, turbulent flames, liquid fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883