Search results for: retrieval algorithms
1091 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram
Authors: V Krishnaveni, S Jayaraman, K Ramadoss
Abstract:
The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.
Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21931090 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems
Authors: Li Shoutao, Gordon Lee
Abstract:
Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.Keywords: adaptive fuzzy neural inference, evolutionary tuning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101089 Stealthy Network Transfer of Data
Authors: N. Veerasamy, C. J. Cheyne
Abstract:
Users of computer systems may often require the private transfer of messages/communications between parties across a network. Information warfare and the protection and dominance of information in the military context is a prime example of an application area in which the confidentiality of data needs to be maintained. The safe transportation of critical data is therefore often a vital requirement for many private communications. However, unwanted interception/sniffing of communications is also a possibility. An elementary stealthy transfer scheme is therefore proposed by the authors. This scheme makes use of encoding, splitting of a message and the use of a hashing algorithm to verify the correctness of the reconstructed message. For this proof-of-concept purpose, the authors have experimented with the random sending of encoded parts of a message and the construction thereof to demonstrate how data can stealthily be transferred across a network so as to prevent the obvious retrieval of data.Keywords: Construction, encode, interception, stealthy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11961088 Relay Node Placement for Connectivity Restoration in Wireless Sensor Networks Using Genetic Algorithms
Authors: Hanieh Tarbiat Khosrowshahi, Mojtaba Shakeri
Abstract:
Wireless Sensor Networks (WSNs) consist of a set of sensor nodes with limited capability. WSNs may suffer from multiple node failures when they are exposed to harsh environments such as military zones or disaster locations and lose connectivity by getting partitioned into disjoint segments. Relay nodes (RNs) are alternatively introduced to restore connectivity. They cost more than sensors as they benefit from mobility, more power and more transmission range, enforcing a minimum number of them to be used. This paper addresses the problem of RN placement in a multiple disjoint network by developing a genetic algorithm (GA). The problem is reintroduced as the Steiner tree problem (which is known to be an NP-hard problem) by the aim of finding the minimum number of Steiner points where RNs are to be placed for restoring connectivity. An upper bound to the number of RNs is first computed to set up the length of initial chromosomes. The GA algorithm then iteratively reduces the number of RNs and determines their location at the same time. Experimental results indicate that the proposed GA is capable of establishing network connectivity using a reasonable number of RNs compared to the best existing work.
Keywords: Connectivity restoration, genetic algorithms, multiple-node failure, relay nodes, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11041087 Secure Socket Layer in the Network and Web Security
Authors: Roza Dastres, Mohsen Soori
Abstract:
In order to electronically exchange information between network users in the web of data, different software such as outlook is presented. So, the traffic of users on a site or even the floors of a building can be decreased as a result of applying a secure and reliable data sharing software. It is essential to provide a fast, secure and reliable network system in the data sharing webs to create an advanced communication systems in the users of network. In the present research work, different encoding methods and algorithms in data sharing systems is studied in order to increase security of data sharing systems by preventing the access of hackers to the transferred data. To increase security in the networks, the possibility of textual conversation between customers of a local network is studied. Application of the encryption and decryption algorithms is studied in order to increase security in networks by preventing hackers from infiltrating. As a result, a reliable and secure communication system between members of a network can be provided by preventing additional traffic in the website environment in order to increase speed, accuracy and security in the network and web systems of data sharing.
Keywords: Secure Socket Layer, Security of networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5101086 Complexity Leadership and Knowledge Management in Higher Education
Authors: Prabhakar Venugopal Gantasala
Abstract:
Complex environments triggered by globalization have necessitated new paradigms of leadership – Complexity Leadership that encompass multiple roles that leaders need to take upon. Success of Higher Education institutions depends on how well leaders can provide adaptive, administrative and enabling leadership. Complexity Leadership seems all the more relevant for institutions that are knowledge-driven and thrive on Knowledge creation, Knowledge storage and retrieval, Knowledge Sharing and Knowledge applications. Discussed in this paper are the elements of Globalization and the opportunities and challenges that are brought forth by globalization. The Complexity leadership paradigm in a knowledge-based economy and the need for such a paradigm shift for higher education institutions is presented. Further, the paper also discusses the support the leader requires in a knowledge-driven economy through knowledge management initiatives.Keywords: Globalization, Complexity Leadership, Knowledge Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17961085 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network
Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem
Abstract:
In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871084 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500
Authors: Mustafa Elfituri, Jonathan Cook
Abstract:
Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.
Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5481083 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System
Authors: Manisha Dubey, Aalok Dubey
Abstract:
This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27361082 Bridging the Communication Gap at NASA - A Case Study in Communities of Practice
Authors: Daria Topousis, Keri Murphy, Jeanne Holm
Abstract:
Following the loss of NASA's Space Shuttle Columbia in 2003, it was determined that problems in the agency's organization created an environment that led to the accident. One component of the proposed solution resulted in the formation of the NASA Engineering Network (NEN), a suite of information retrieval and knowledge-sharing tools. This paper describes the implementation of communities of practice, which are formed along engineering disciplines. Communities of practice enable engineers to leverage their knowledge and best practices to collaborate and take information learning back to their jobs and embed it into the procedures of the agency. This case study offers insight into using traditional engineering disciplines for virtual collaboration, including lessons learned during the creation and establishment of NASA-s communities.Keywords: Collaboration, communities of practice, knowledge management, virtual teams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18631081 Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise
Authors: Yan Li, Ronald Briggs
Abstract:
Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.
Keywords: Automatic road extraction, Image processing, Feature extraction, GIS update, Remote sensing, Geo-referencing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011080 Evaluation of Features Extraction Algorithms for a Real-Time Isolated Word Recognition System
Authors: Tomyslav Sledevič, Artūras Serackis, Gintautas Tamulevičius, Dalius Navakauskas
Abstract:
Paper presents an comparative evaluation of features extraction algorithm for a real-time isolated word recognition system based on FPGA. The Mel-frequency cepstral, linear frequency cepstral, linear predictive and their cepstral coefficients were implemented in hardware/software design. The proposed system was investigated in speaker dependent mode for 100 different Lithuanian words. The robustness of features extraction algorithms was tested recognizing the speech records at different signal to noise rates. The experiments on clean records show highest accuracy for Mel-frequency cepstral and linear frequency cepstral coefficients. For records with 15 dB signal to noise rate the linear predictive cepstral coefficients gives best result. The hard and soft part of the system is clocked on 50 MHz and 100 MHz accordingly. For the classification purpose the pipelined dynamic time warping core was implemented. The proposed word recognition system satisfy the real-time requirements and is suitable for applications in embedded systems.
Keywords: Isolated word recognition, features extraction, MFCC, LFCC, LPCC, LPC, FPGA, DTW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35401079 Secure Bio Semantic Computing Scheme
Authors: Hiroshi Yamaguchi, Phillip C.-Y. Sheu, Ryo Fujita, Shigeo Tsujii
Abstract:
In this paper, the secure BioSemantic Scheme is presented to bridge biological/biomedical research problems and computational solutions via semantic computing. Due to the diversity of problems in various research fields, the semantic capability description language (SCDL) plays and important role as a common language and generic form for problem formalization. SCDL is expected the essential for future semantic and logical computing in Biosemantic field. We show several example to Biomedical problems in this paper. Moreover, in the coming age of cloud computing, the security problem is considered to be crucial issue and we presented a practical scheme to cope with this problem.Keywords: Biomedical applications, private information retrieval (PIR), semantic capability description language (SCDL), semantic computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18451078 Adaptive and Personalizing Learning Sequence Using Modified Roulette Wheel Selection Algorithm
Authors: Melvin A. Ballera
Abstract:
Prior literature in the field of adaptive and personalized learning sequence in e-learning have proposed and implemented various mechanisms to improve the learning process such as individualization and personalization, but complex to implement due to expensive algorithmic programming and need of extensive and prior data. The main objective of personalizing learning sequence is to maximize learning by dynamically selecting the closest teaching operation in order to achieve the learning competency of learner. In this paper, a revolutionary technique has been proposed and tested to perform individualization and personalization using modified reversed roulette wheel selection algorithm that runs at O(n). The technique is simpler to implement and is algorithmically less expensive compared to other revolutionary algorithms since it collects the dynamic real time performance matrix such as examinations, reviews, and study to form the RWSA single numerical fitness value. Results show that the implemented system is capable of recommending new learning sequences that lessens time of study based on student's prior knowledge and real performance matrix.Keywords: E-learning, fitness value, personalized learning sequence, reversed roulette wheel selection algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271077 Content-Based Color Image Retrieval Based On 2-D Histogram and Statistical Moments
Authors: Khalid Elasnaoui, Brahim Aksasse, Mohammed Ouanan
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, Statistical moments, Indexing, Similarity distance, Histograms intersection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311076 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21071075 Flow Modeling and Runner Design Optimization in Turgo Water Turbines
Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis
Abstract:
The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40571074 An Exploratory Study of Reliability of Ranking vs. Rating in Peer Assessment
Authors: Yang Song, Yifan Guo, Edward F. Gehringer
Abstract:
Fifty years of research has found great potential for peer assessment as a pedagogical approach. With peer assessment, not only do students receive more copious assessments; they also learn to become assessors. In recent decades, more educational peer assessments have been facilitated by online systems. Those online systems are designed differently to suit different class settings and student groups, but they basically fall into two categories: rating-based and ranking-based. The rating-based systems ask assessors to rate the artifacts one by one following some review rubrics. The ranking-based systems allow assessors to review a set of artifacts and give a rank for each of them. Though there are different systems and a large number of users of each category, there is no comprehensive comparison on which design leads to higher reliability. In this paper, we designed algorithms to evaluate assessors' reliabilities based on their rating/ranking against the global ranks of the artifacts they have reviewed. These algorithms are suitable for data from both rating-based and ranking-based peer assessment systems. The experiments were done based on more than 15,000 peer assessments from multiple peer assessment systems. We found that the assessors in ranking-based peer assessments are at least 10% more reliable than the assessors in rating-based peer assessments. Further analysis also demonstrated that the assessors in ranking-based assessments tend to assess the more differentiable artifacts correctly, but there is no such pattern for rating-based assessors.
Keywords: Peer assessment, peer rating, peer ranking, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11151073 Automatic Extraction of Water Bodies Using Whole-R Method
Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao
Abstract:
Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R color component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.
Keywords: Chromaticity, Feature Extraction, Remote Sensing, Spectral library, Water Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33701072 Optimizing Dialogue Strategy Learning Using Learning Automata
Authors: G. Kumaravelan, R. Sivakumar
Abstract:
Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.Keywords: Dialogue management, Learning automata, Reinforcement learning, Spoken dialogue system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16111071 Enhanced Multi-Intensity Analysis in Multi-Scenery Classification-Based Macro and Micro Elements
Authors: R. Bremananth
Abstract:
Several computationally challenging issues are encountered while classifying complex natural scenes. In this paper, we address the problems that are encountered in rotation invariance with multi-intensity analysis for multi-scene overlapping. In the present literature, various algorithms proposed techniques for multi-intensity analysis, but there are several restrictions in these algorithms while deploying them in multi-scene overlapping classifications. In order to resolve the problem of multi-scenery overlapping classifications, we present a framework that is based on macro and micro basis functions. This algorithm conquers the minimum classification false alarm while pigeonholing multi-scene overlapping. Furthermore, a quadrangle multi-intensity decay is invoked. Several parameters are utilized to analyze invariance for multi-scenery classifications such as rotation, classification, correlation, contrast, homogeneity, and energy. Benchmark datasets were collected for complex natural scenes and experimented for the framework. The results depict that the framework achieves a significant improvement on gray-level matrix of co-occurrence features for overlapping in diverse degree of orientations while pigeonholing multi-scene overlapping.Keywords: Automatic classification, contrast, homogeneity, invariant analysis, multi-scene analysis, overlapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11211070 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings
Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank
Abstract:
Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].Keywords: data mining, protein secondary structure prediction, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961069 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK
Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick
Abstract:
The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.
Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721068 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.
Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8221067 Financing - Scheduling Optimization for Construction Projects by using Genetic Algorithms
Authors: Hesham Abdel-Khalek, Sherif M. Hafez, Abdel-Hamid M. el-Lakany, Yasser Abuel-Magd
Abstract:
Investment in a constructed facility represents a cost in the short term that returns benefits only over the long term use of the facility. Thus, the costs occur earlier than the benefits, and the owners of facilities must obtain the capital resources to finance the costs of construction. A project cannot proceed without an adequate financing, and the cost of providing an adequate financing can be quite large. For these reasons, the attention to the project finance is an important aspect of project management. Finance is also a concern to the other organizations involved in a project such as the general contractor and material suppliers. Unless an owner immediately and completely covers the costs incurred by each participant, these organizations face financing problems of their own. At a more general level, the project finance is the only one aspect of the general problem of corporate finance. If numerous projects are considered and financed together, then the net cash flow requirements constitute the corporate financing problem for capital investment. Whether project finance is performed at the project or at the corporate level does not alter the basic financing problem .In this paper, we will first consider facility financing from the owner's perspective, with due consideration for its interaction with other organizations involved in a project. Later, we discuss the problems of construction financing which are crucial to the profitability and solvency of construction contractors. The objective of this paper is to present the steps utilized to determine the best combination of minimum project financing. The proposed model considers financing; schedule and maximum net area .The proposed model is called Project Financing and Schedule Integration using Genetic Algorithms "PFSIGA". This model intended to determine more steps (maximum net area) for any project with a subproject. An illustrative example will demonstrate the feature of this technique. The model verification and testing are put into consideration.Keywords: Project Management, Large-scale ConstructionProjects, Cash flow, Interest, Investment, Loan, Optimization, Scheduling, Financing and Genetic Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201066 Modelling Sudoku Puzzles as Block-world Problems
Authors: Cecilia Nugraheni, Luciana Abednego
Abstract:
Sudoku is a kind of logic puzzles. Each puzzle consists of a board, which is a 9×9 cells, divided into nine 3×3 subblocks and a set of numbers from 1 to 9. The aim of this puzzle is to fill in every cell of the board with a number from 1 to 9 such that in every row, every column, and every subblock contains each number exactly one. Sudoku puzzles belong to combinatorial problem (NP complete). Sudoku puzzles can be solved by using a variety of techniques/algorithms such as genetic algorithms, heuristics, integer programming, and so on. In this paper, we propose a new approach for solving Sudoku which is by modelling them as block-world problems. In block-world problems, there are a number of boxes on the table with a particular order or arrangement. The objective of this problem is to change this arrangement into the targeted arrangement with the help of two types of robots. In this paper, we present three models for Sudoku. We modellized Sudoku as parameterized multi-agent systems. A parameterized multi-agent system is a multi-agent system which consists of several uniform/similar agents and the number of the agents in the system is stated as the parameter of this system. We use Temporal Logic of Actions (TLA) for formalizing our models.
Keywords: Sudoku puzzle, block world problem, parameterized multi agent systems modelling, Temporal Logic of Actions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24381065 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.
Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26041064 Multimedia Firearms Training System
Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel
Abstract:
The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.
Keywords: Firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13341063 Describing Learning Features of Reusable Resources: A Proposal
Authors: Serena Alvino, Paola Forcheri, Maria Grazia Ierardi, Luigi Sarti
Abstract:
One of the main advantages of the LO paradigm is to allow the availability of good quality, shareable learning material through the Web. The effectiveness of the retrieval process requires a formal description of the resources (metadata) that closely fits the user-s search criteria; in spite of the huge international efforts in this field, educational metadata schemata often fail to fulfil this requirement. This work aims to improve the situation, by the definition of a metadata model capturing specific didactic features of shareable learning resources. It classifies LOs into “teacher-oriented" and “student-oriented" categories, in order to describe the role a LO is to play when it is integrated into the educational process. This article describes the model and a first experimental validation process that has been carried out in a controlled environment.Keywords: Learning object, pedagogical metadata, experimental validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15451062 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: Incremental conductance Algorithm, Perturb and Observe Algorithm, Photovoltaic System and Simulation Results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258