Search results for: gait recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 852

Search results for: gait recognition

222 Occupants- Behavior and Spatial Implications of Riverfront Residential in Yogyakarta, Indonesia

Authors: Hastuti Saptorini

Abstract:

The urbanization phenomenon in Yogyakarta Special Province, Indonesia, encouraged people move to the city for getting jobs in the informal sectors. They live in some temporary houses in the three main riverbanks: Gadjahwong, Code, and Winongo. Triggered by its independent status they use it as the space for accommodating domestic, social and economy activities because of the non standardized room size of their houses, where are recognized as the environmental hazards. This recognition makes the ambivalent perception when was related to the twelfth point of the philosophy of community development concept: the empowering individuals and communities. Its spatial implication have actually described the territory and the place making phenomena. By analyzing some data collected the author-s fundamental research funded by The General Directorate of Higher Education of Indonesia, this paper will discuss how do the spatial implications of the occupants- behavior and the numerous perceptions of those phenomena.

Keywords: occupants' behavior, socio-economic-cultural activities, spatial implication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
221 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113
220 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: Aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
219 A New Automatic System of Cell Colony Counting

Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva

Abstract:

The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.

Keywords: Automatic cell counting, neural network, region growing, Sanger net.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
218 OCR For Printed Urdu Script Using Feed Forward Neural Network

Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan

Abstract:

This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.

Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3035
217 Online Collaborative Learning System Using Speech Technology

Authors: Sid-Ahmed. Selouani, Tang-Ho Lê, Chadia Moghrabi, Benoit Lanteigne, Jean Roy

Abstract:

A Web-based learning tool, the Learn IN Context (LINC) system, designed and being used in some institution-s courses in mixed-mode learning, is presented in this paper. This mode combines face-to-face and distance approaches to education. LINC can achieve both collaborative and competitive learning. In order to provide both learners and tutors with a more natural way to interact with e-learning applications, a conversational interface has been included in LINC. Hence, the components and essential features of LINC+, the voice enhanced version of LINC, are described. We report evaluation experiments of LINC/LINC+ in a real use context of a computer programming course taught at the Université de Moncton (Canada). The findings show that when the learning material is delivered in the form of a collaborative and voice-enabled presentation, the majority of learners seem to be satisfied with this new media, and confirm that it does not negatively affect their cognitive load.

Keywords: E-leaning, Knowledge Network, Speech recognition, Speech synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
216 Myth in Political Discourse as a Form of Linguistic Consciousness

Authors: Kuralay Kenzhekanova, Akmaral Dalelbekkyzy

Abstract:

The article is devoted to the problem of political discourse and its reflection on mass cognition. This article is dedicated to describe the myth as one of the main features of political discourse. The dominance of an expressional and emotional component in the myth is shown. Precedent phenomenon plays an important role in distinguishing the myth from the linguistic point of view. Precedent phenomena show the linguistic cognition, which is characterized by their fame and recognition. Four types of myths such as master myths, a foundation myth, sustaining myth, eschatological myths are observed. The myths about the national idea are characterized by national specificity. The main aim of the political discourse with the help of myths is to influence on the mass consciousness in order to motivate the addressee to certain actions so that the target purpose is reached owing to unity of forces.

Keywords: Cognition, myth, linguistic consciousness, types of myths, political discourse, political myth, precedent phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
215 Action Recognition in Video Sequences using a Mealy Machine

Authors: L. Rodriguez-Benitez, J. Moreno-Garcia, J.J. Castro-Schez, C. Solana, L. Jimenez

Abstract:

In this paper the use of sequential machines for recognizing actions taken by the objects detected by a general tracking algorithm is proposed. The system may deal with the uncertainty inherent in medium-level vision data. For this purpose, fuzzification of input data is performed. Besides, this transformation allows to manage data independently of the tracking application selected and enables adding characteristics of the analyzed scenario. The representation of actions by means of an automaton and the generation of the input symbols for finite automaton depending on the object and action compared are described. The output of the comparison process between an object and an action is a numerical value that represents the membership of the object to the action. This value is computed depending on how similar the object and the action are. The work concludes with the application of the proposed technique to identify the behavior of vehicles in road traffic scenes.

Keywords: Approximate reasoning, finite state machines, video analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
214 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
213 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.

Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
212 MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music

Authors: Brigitte Rafael, Stefan M. Oertl

Abstract:

Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.

Keywords: Pattern Recognition, Music Information Retrieval, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
211 Object Tracking using MACH filter and Optical Flow in Cluttered Scenes and Variable Lighting Conditions

Authors: Waqar Shahid Qureshi, Abu-Baqar Nisar Alvi

Abstract:

Vision based tracking problem is solved through a combination of optical flow, MACH filter and log r-θ mapping. Optical flow is used for detecting regions of movement in video frames acquired under variable lighting conditions. The region of movement is segmented and then searched for the target. A template is used for target recognition on the segmented regions for detecting the region of interest. The template is trained offline on a sequence of target images that are created using the MACH filter and log r-θ mapping. The template is applied on areas of movement in successive frames and strong correlation is seen for in-class targets. Correlation peaks above a certain threshold indicate the presence of target and the target is tracked over successive frames.

Keywords: Correlation filters, optical flow, log r-θ mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
210 Vision Based Robotic Interception in Industrial Manipulation Tasks

Authors: Ahmet Denker, Tuğrul Adıgüzel

Abstract:

In this paper, a solution is presented for a robotic manipulation problem in industrial settings. The problem is sensing objects on a conveyor belt, identifying the target, planning and tracking an interception trajectory between end effector and the target. Such a problem could be formulated as combining object recognition, tracking and interception. For this purpose, we integrated a vision system to the manipulation system and employed tracking algorithms. The control approach is implemented on a real industrial manipulation setting, which consists of a conveyor belt, objects moving on it, a robotic manipulator, and a visual sensor above the conveyor. The trjectory for robotic interception at a rendezvous point on the conveyor belt is analytically calculated. Test results show that tracking the raget along this trajectory results in interception and grabbing of the target object.

Keywords: robotics, robot vision, rendezvous planning, self organizingmaps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
209 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

Authors: Sergio Pissanetzky

Abstract:

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
208 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)

Authors: Dinh Ha, Tran, Chung - Ruey Yen

Abstract:

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3 g) in Chaozhou 5, Orejona, and F11, respectively. TSS contents were not much influenced by pollination methods.

Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546
207 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)

Authors: Dinh - Ha Tran, Chung - Ruey Yen

Abstract:

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3g) in Chaozhou 5, Orejona and F11, respectively. TSS contents were not much influcenced by pollination methods.

Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2937
206 Learning User Keystroke Patterns for Authentication

Authors: Ying Zhao

Abstract:

Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.

Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
205 Structural Basis of Resistance of Helicobacterpylori DnaK to Antimicrobial Peptide Pyrrhocoricin

Authors: Musammat F. Nahar, Anna Roujeinikova

Abstract:

Bacterial molecular chaperone DnaK plays an essential role in protein folding, stress response and transmembrane targeting of proteins. DnaKs from many bacterial species, including Escherichia coli, Salmonella typhimurium and Haemophilus infleunzae are the molecular targets for the insect-derived antimicrobial peptide pyrrhocoricin. Pyrrhocoricin-like peptides bind in the substrate recognition tunnel. Despite the high degree of crossspecies sequence conservation in the substrate-binding tunnel, some bacteria are not sensitive to pyrrhocoricin. This work addresses the molecular mechanism of resistance of Helicobacter pylori DnaK to pyrrhocoricin. Homology modelling, structural and sequence analysis identify a single aminoacid substitution at the interface between the lid and the β-sandwich subdomains of the DnaK substrate-binding domain as the major determinant for its resistance.

Keywords: Helicobacter pylori, molecular chaperone DnaK, pyrrhocoricin, structural biology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
204 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
203 A Cross-Gender Statistical Analysis of Tuvinian Intonation Features in Comparison With Uzbek and Azerbaijani

Authors: D. Beziakina, E. Bulgakova

Abstract:

The paper deals with cross-gender and cross-linguistic comparison of pitch characteristics for Tuvinian with two other Turkic languages - Uzbek and Azerbaijani, based on the results of statistical analysis of pitch parameter values and intonation patterns used by male and female speakers.

The main goal of our work is to obtain the ranges of pitch parameter values typical for Tuvinian speakers for the purpose of automatic language identification. We also propose a cross-gender analysis of declarative intonation in the poorly studied Tuvinian language.

The ranges of pitch parameter values were obtained by means of specially developed software that deals with the distribution of pitch values and allows us to obtain statistical language-specific pitch intervals.

Keywords: Speech analysis, Statistical analysis, Speaker recognition, Identification of person.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
202 Improved Artificial Immune System Algorithm with Local Search

Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi

Abstract:

The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithms

Keywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
201 Empirical Study on the Student Satisfaction in Higher Education: Importance-Satisfaction Analysis

Authors: Silva, Fátima, Fernandes, Paula Odete

Abstract:

The future of Higher Education Institutions (HEI) depend on their ability to attract and retain students, increase recognition and prestige. In order to respond to the 'customers' increasingly demanding, HEI need to identify the key factors that influence the satisfaction of a 'customers', thereby creating competitive advantages. These determinants of satisfaction are important elements that guide the strategy of an institution and allow the successful achievement of strategic plans, both teaching and administrative, to offer their ‘costumers’ services and products with higher quality. Following this way of thinking, the purpose of this study was to evaluate the satisfaction with the service quality of the School of Technology and Management of Bragança (ESTiG), of the Polytechnic Institute of Bragança, identifying, thus, the dimensions related to the quality of services that might influence students' satisfaction. The results showed that, in general, the students are satisfied with the performance of ESTiG.

Keywords: Customer Satisfaction, Higher Education Institutions, Importance-Satisfaction Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
200 Characterization of a Novel Galactose-Binding Lectin Homologue from Tenebrio molitor

Authors: JiEun Jeong, Dong Hyun Kim, Bharat Bhusan Patnaik, Se Won Kang, HeeJu Hwang, Yong Hun Jo, Dae-Hyun Seog, YeonSooHan, Yong Seok Lee

Abstract:

An expressed sequence tag (EST) analysis provideus portions of expressed genes. We have constructed cDNA library and determined randomly sequences from cDNA library clones of T. molitor injected with acholeplasma lysate. We identified the homologous to a galectin gene. As the result of cloning and characterization of novel, we found that the protein has an open reading frame (ORF) of 495 bp, with 164 amino acid residues and molecular weight of 18.5 kDa. To characterize the role of novel Tm-galectin in immune system, we quantified the mRNA level of galectin at different times after treatment with immune elicitors. The galectin mRNA was up-regulated about 7-folds within 18 hrs. This suggests that Tm-galectin is a novel member of animal lectins, and has a role in the process of pathogen recognition. Our study would be helpful for the study on immune defense system and signaling cascade.

Keywords: EST, Innate immunity, Tenebrio molitor, Galectin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
199 Comparing Hilditch, Rosenfeld, Zhang-Suen,and Nagendraprasad -Wang-Gupta Thinning

Authors: Anastasia Rita Widiarti

Abstract:

This paper compares Hilditch, Rosenfeld, Zhang- Suen, dan Nagendraprasad Wang Gupta (NWG) thinning algorithms for Javanese character image recognition. Thinning is an effective process when the focus in not on the size of the pattern, but rather on the relative position of the strokes in the pattern. The research analyzes the thinning of 60 Javanese characters. Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.

Keywords: Hilditch algorithm, Nagendraprasad-Wang-Guptaalgorithm, Rosenfeld algorithm, Thinning, Zhang-suen algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3920
198 Negative Temperature Dependence of a Gravity - A Reality

Authors: Alexander L. Dmitriev, Sophia A. Bulgakova

Abstract:

Temperature dependence of force of gravitation is one of the fundamental problems of physics. This problem has got special value in connection with that the general theory of relativity, supposing the weakest positive influence of a body temperature on its weight, actually rejects an opportunity of measurement of negative influence of temperature on gravity in laboratory conditions. Really, the recognition of negative temperature dependence of gravitation, for example, means basic impossibility of achievement of a singularity («a black hole») at a gravitational collapse. Laboratory experiments with exact weighing the heated up metal samples, indicating negative influence temperatures of bodies on their physical weight are described. Influence of mistakes of measurements is analyzed. Calculations of distribution of temperature in volume of the bar, agreed with experimental data of time dependence of weight of samples are executed. The physical substantiation of negative temperature dependence of weight of the bodies, based on correlation of acceleration at thermal movement of micro-particles of a body and its absolute temperature, are given.

Keywords: Gravitation, temperature, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
197 A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method

Authors: Yanhui Zhang, Wenyu Yang

Abstract:

One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.

Keywords: Bayesian method, damage detection, fiber Bragg grating, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
196 Connect among Green, Sustainability and Hotel Industry: A Prospective Simulation Study

Authors: Leena N. Fukey, Surya S. Issac

Abstract:

This review paper aims at understanding the importance of implementing sustainable green practices in the current hotel industry and the perception of the same from the point of view of the customers as well as the industry experts. Many hotels have benefited from green management such as enhanced reputation of the firm and more worth customers. For the business standing, it reduces business’s cost for posting advertisements and the clear hotel’s orientation shows hotels’ positive image which might increase employees’ recognition toward the business. Sustainability in business is the growth in lively processes which enable people to understand the potential to protect the Earth’s existent support systems. Well, looking to the future today’s green concerns will definitely become facet of more synchronized business environment, perhaps the concerns discussed in this study, may exchange a few words which hotels may consider in near future to widen awareness and improve business model.

Keywords: Environmental Protection, Green Hotel Concept, Hotel Industry, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8862
195 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
194 Hand Gesture Recognition: Sign to Voice System (S2V)

Authors: Oi Mean Foong, Tan Jung Low, Satrio Wibowo

Abstract:

Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.

Keywords: Hand gesture detection, neural network, signlanguage, sequence detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
193 GA Based Optimal Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556