Search results for: functional prediction
1049 Drivers of Customer Satisfaction in an Industrial Company from Marketing Aspect
Authors: M. Arefi, A.M. Amini, K. Fallahi
Abstract:
One of the basic concepts in marketing is the concept of meeting customers- needs. Since customer satisfaction is essential for lasting survival and development of a business, screening and observing customer satisfaction and recognizing its underlying factors must be one of the key activities of every business. The purpose of this study is to recognize the drivers that effect customer satisfaction in a business-to-business situation in order to improve marketing activities. We conducted a survey in which 93 business customers of a manufacturer of Diesel Generator in Iran participated and they talked about their ideas and satisfaction of supplier-s services related to its products. We developed the measures for drivers of satisfaction first by as investigative research (by means of feedback from executives and customers of sponsoring firm). Then based on these measures, we created a mail survey, and asked the respondents to explain their opinion about the sponsoring firm which was a supplier of diesel generator and similar products. Furthermore, the survey required the participants to mention their functional areas and their company features. In Conclusion we found that there are three drivers for customer satisfaction, which are reliability, information about product, and commercial features. Buyers/users from different functional areas attribute different degree of importance to the last two drivers. For instance, people from buying and management areas believe that commercial features are more important than information about products. But people in engineering, maintenance and production areas believe that having information about products is more important than commercial aspects. Marketing experts should consider the attribute of customers regarding information about the product and commercial features to improve market share.Keywords: B2B, Customer satisfaction, Commercial, Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26831048 Selective Encryption using ISMA Cryp in Real Time Video Streaming of H.264/AVC for DVB-H Application
Authors: Jay M. Joshi, Upena D. Dalal
Abstract:
Multimedia information availability has increased dramatically with the advent of video broadcasting on handheld devices. But with this availability comes problems of maintaining the security of information that is displayed in public. ISMA Encryption and Authentication (ISMACryp) is one of the chosen technologies for service protection in DVB-H (Digital Video Broadcasting- Handheld), the TV system for portable handheld devices. The ISMACryp is encoded with H.264/AVC (advanced video coding), while leaving all structural data as it is. Two modes of ISMACryp are available; the CTR mode (Counter type) and CBC mode (Cipher Block Chaining) mode. Both modes of ISMACryp are based on 128- bit AES algorithm. AES algorithms are more complex and require larger time for execution which is not suitable for real time application like live TV. The proposed system aims to gain a deep understanding of video data security on multimedia technologies and to provide security for real time video applications using selective encryption for H.264/AVC. Five level of security proposed in this paper based on the content of NAL unit in Baseline Constrain profile of H.264/AVC. The selective encryption in different levels provides encryption of intra-prediction mode, residue data, inter-prediction mode or motion vectors only. Experimental results shown in this paper described that fifth level which is ISMACryp provide higher level of security with more encryption time and the one level provide lower level of security by encrypting only motion vectors with lower execution time without compromise on compression and quality of visual content. This encryption scheme with compression process with low cost, and keeps the file format unchanged with some direct operations supported. Simulation was being carried out in Matlab.Keywords: AES-128, CAVLC, H.264, ISMACryp
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491047 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)
Authors: Abbas Hani, Seyed Ali Hoseini Abari
Abstract:
Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27001046 Evaluation of the Analytic for Hemodynamic Instability as A Prediction Tool for Early Identification of Patient Deterioration
Authors: Bryce Benson, Sooin Lee, Ashwin Belle
Abstract:
Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.
Keywords: Clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4501045 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages
Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska
Abstract:
The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method.
Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.
Keywords: Sea buckthorn, meat products, texture, color parameters, lipid oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28711044 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7741043 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.
Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11841042 Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland
Authors: Sotirios Raptis
Abstract:
Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.
Keywords: Class, cohorts, data frames, grouping, prediction, probabilities, services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4601041 Anthropometric Correlates of Balance Performance in Non-Institutionalized Elderly
Authors: Okafor UAC, Ibeabuchimn, Omidina JO, Igwesi-Chidobe CN, Akinbo SRA
Abstract:
Purpose: The fear of falling is a major concern among the elderly. Sixty-five percent of individuals older than 60 years of age experience loss of balance often on a daily basis. Therefore, balance assessment in the elderly deserves special attention due to its importance in functional mobility and safety. This study aimed at assessing balance performance and comparing some anthropometric parameters among a Nigerian non-institutionalized elderly population.
Methods: Sixty one elderly subjects (31 males and 30 females) participated in this study. Their ages ranged between 62 and 84 years. Ability to maintain balance was assessed using Functional Reach Test (FRT) and Sharpened Romberg Test (SRT). Anthropometric data including age, weight, height, arm length, leg length, bi-acromial breadth, foot length and trunk length were also collected. Analysis was done using Pearson’s Product Moment Correlation Coefficient and Independent T-test, while level of significance was set as p<0.05.
Results: Age-related significant relationship was observed between balance performance and bi-acromial breadth among the elderly population. Gender and visual input also had a significant influence on balance performance. Other anthropometric variables (age, weight, height, arm length, leg length, foot length and trunk length) showed no significant relationship with balance performance among this elderly sample.
Conclusion: Only specific anthropometric variables may affect balance performances among the healthy elderly. The study further highlights the need for routine assessment of both static and dynamic balance to detect and appropriately manage aging-related diseases which could affect balance in the elderly.
Keywords: Balance Performance, Anthropometry, Non-institutionalized Elderly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24311040 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth
Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias
Abstract:
Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.
Keywords: CNT, CO hydro-deoxygenation, DFT, liquid fuels, XPS, XTL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7771039 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume
Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto
Abstract:
Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.
Keywords: Stress, functional near-infrared spectroscopy, frontal lobe, state-trait anxiety inventory score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11661038 Precipitation Intensity: Duration Based Threshold Analysis for Initiation of Landslides in Upper Alaknanda Valley
Authors: Soumiya Bhattacharjee, P. K. Champati Ray, Shovan L. Chattoraj, Mrinmoy Dhara
Abstract:
The entire Himalayan range is globally renowned for rainfall-induced landslides. The prime focus of the study is to determine rainfall based threshold for initiation of landslides that can be used as an important component of an early warning system for alerting stake holders. This research deals with temporal dimension of slope failures due to extreme rainfall events along the National Highway-58 from Karanprayag to Badrinath in the Garhwal Himalaya, India. Post processed 3-hourly rainfall intensity data and its corresponding duration from daily rainfall data available from Tropical Rainfall Measuring Mission (TRMM) were used as the prime source of rainfall data. Landslide event records from Border Road Organization (BRO) and some ancillary landslide inventory data for 2013 and 2014 have been used to determine Intensity Duration (ID) based rainfall threshold. The derived governing threshold equation, I= 4.738D-0.025, has been considered for prediction of landslides of the study region. This equation was validated with an accuracy of 70% landslides during August and September 2014. The derived equation was considered for further prediction of landslides of the study region. From the obtained results and validation, it can be inferred that this equation can be used for initiation of landslides in the study area to work as a part of an early warning system. Results can significantly improve with ground based rainfall estimates and better database on landslide records. Thus, the study has demonstrated a very low cost method to get first-hand information on possibility of impending landslide in any region, thereby providing alert and better preparedness for landslide disaster mitigation.
Keywords: Landslide, intensity-duration, rainfall threshold, Tropical Rainfall Measuring Mission, slope, inventory, early warning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12371037 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: Elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6111036 IntelligentLogger: A Heavy-Duty Vehicles Fleet Management System Based on IoT and Smart Prediction Techniques
Authors: D. Goustouridis, A. Sideris, I. Sdrolias, G. Loizos, N.-Alexander Tatlas, S. M. Potirakis
Abstract:
Both daily and long-term management of a heavy-duty vehicles and construction machinery fleet is an extremely complicated and hard to solve issue. This is mainly due to the diversity of the fleet vehicles – machinery, which concerns not only the vehicle types, but also their age/efficiency, as well as the fleet volume, which is often of the order of hundreds or even thousands of vehicles/machineries. In the present paper we present “InteligentLogger”, a holistic heavy-duty fleet management system covering a wide range of diverse fleet vehicles. This is based on specifically designed hardware and software for the automated vehicle health status and operational cost monitoring, for smart maintenance. InteligentLogger is characterized by high adaptability that permits to be tailored to practically any heavy-duty vehicle/machinery (of different technologies -modern or legacy- and of dissimilar uses). Contrary to conventional logistic systems, which are characterized by raised operational costs and often errors, InteligentLogger provides a cost-effective and reliable integrated solution for the e-management and e-maintenance of the fleet members. The InteligentLogger system offers the following unique features that guarantee successful heavy-duty vehicles/machineries fleet management: (a) Recording and storage of operating data of motorized construction machinery, in a reliable way and in real time, using specifically designed Internet of Things (IoT) sensor nodes that communicate through the available network infrastructures, e.g., 3G/LTE; (b) Use on any machine, regardless of its age, in a universal way; (c) Flexibility and complete customization both in terms of data collection, integration with 3rd party systems, as well as in terms of processing and drawing conclusions; (d) Validation, error reporting & correction, as well as update of the system’s database; (e) Artificial intelligence (AI) software, for processing information in real time, identifying out-of-normal behavior and generating alerts; (f) A MicroStrategy based enterprise BI, for modeling information and producing reports, dashboards, and alerts focusing on vehicles– machinery optimal usage, as well as maintenance and scraping policies; (g) Modular structure that allows low implementation costs in the basic fully functional version, but offers scalability without requiring a complete system upgrade.
Keywords: E-maintenance, predictive maintenance, IoT sensor nodes, cost optimization, artificial intelligence, heavy-duty vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7691035 A Lactose-Free Yogurt Using Membrane Systems and Modified Milk Protein Concentrate: Production and Characterization
Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh
Abstract:
Using membrane technology and modification of milk protein structural properties, a lactose free yogurt was developed. The functional, textural and structural properties of the sample were evaluated and compared with the commercial ones. Results showed that the modification of protein in high fat set yogurt resulted in 11.55%, 18%, 20.21% and 7.08% higher hardness, consistency, water holding capacity, and shininess values compared with the control one. Furthermore, these indices of modified low fat set yogurt were 21.40%, 25.41%, 28.15% & 10.58% higher than the control one, which could be related to the gel network microstructural properties in yogurt formulated with modified protein. In this way, in comparison with the control one, the index of linkage strength (A), the number of linkages (z), and time scale of linkages (λrel) of the high fat modified yogurt were 22.10%, 50.68%, 21.82% higher than the control one; whereas, the average linear distance between two adjacent crosslinks (ξ), was 16.77% lower than the control one. For low fat modified yogurt, A, z, λrel, and ξ indices were 34.30%, 61.70% and 42.60% higher and 19.20% lower than the control one, respectively. The shelf life of modified yogurt was extended to 10 weeks in the refrigerator, while, the control set yogurt had a 3 weeks shelf life. The acidity of high fat and low fat modified yogurts increased from 76 to 84 and 72 to 80 Dornic degrees during 10 weeks of storage, respectively, whereas for control high fat and low fat yogurts they increased from 82 to 122 and 77 to 112 Dornic degrees, respectively. This behavior could be due to the elimination of microorganism’s source of energy in modified yogurt. Furthermore, the calories of high fat and low fat lactose free yogurts were 25% and 40% lower than their control samples, respectively. Generally, results showed that the lactose free yogurt with modified protein, despite of 1% lower protein content than the control one, showed better functional properties, nutritional properties, network parameters, and shelf stability, which could be promising in the set yogurt industry.
Keywords: Lactose free, low calorie, network properties, protein modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721034 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.
Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9281033 Fabrication of Nanoengineered Radiation Shielding Multifunctional Polymeric Sandwich Composites
Authors: Nasim Abuali Galehdari, Venkat Mani, Ajit D. Kelkar
Abstract:
Space Radiation has become one of the major factors in successful long duration space exploration. Exposure to space radiation not only can affect the health of astronauts but also can disrupt or damage materials and electronics. Hazards to materials include degradation of properties, such as, modulus, strength, or glass transition temperature. Electronics may experience single event effects, gate rupture, burnout of field effect transistors and noise. Presently aluminum is the major component in most of the space structures due to its lightweight and good structural properties. However, aluminum is ineffective at blocking space radiation. Therefore, most of the past research involved studying at polymers which contain large amounts of hydrogen. Again, these materials are not structural materials and would require large amounts of material to achieve the structural properties needed. One of the materials to alleviate this problem is polymeric composite materials, which has good structural properties and use polymers that contained large amounts of hydrogen. This paper presents steps involved in fabrication of multi-functional hybrid sandwich panels that can provide beneficial radiation shielding as well as structural strength. Multifunctional hybrid sandwich panels were manufactured using vacuum assisted resin transfer molding process and were subjected to radiation treatment. Study indicates that various nanoparticles including Boron Nano powder, Boron Carbide and Gadolinium nanoparticles can be successfully used to block the space radiation without sacrificing the structural integrity.Keywords: Multi-functional, polymer composites, radiation shielding, sandwich composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161032 Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment
Authors: Zoran D. Banjac, Branko D. Kovacevic
Abstract:
The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.
Keywords: Adaptive filtering, Non-Gaussian filtering, Robustestimation, Scale factor estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17071031 Development of a Tunisian Measurement Scale for Patient Satisfaction: Study case in Tunisian Private Clinics
Authors: M. Daoud-Marrakchi, S. Fendri-Elouze, Ch. Ill, B. Bejar-Ghadhab
Abstract:
The aim of this research is to propose a Measurement Scale for Patient Satisfaction (MSPS) in the context of Tunisian private clinics. This scale is developed using value management methods and is validated by statistic tools with SPSS.Keywords: Functional analysis, Patient satisfaction, Questionnaire, Reliability, Validity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581030 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis
Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus
Abstract:
Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.
Keywords: Additive Manufacturing, Internal topologies, Porosity, Rapid Prototyping, Selective Laser Melting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23621029 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: Early stage prediction, heart rate variability, linear and non linear analysis, sudden cardiac death.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051028 Phytochemical Analysis and Antioxidant Activity of Colocasia esculenta (L.) Leaves
Authors: Amit Keshav, Alok Sharma, Bidyut Mazumdar
Abstract:
Colocasia esculenta leaves and roots are widely used in Asian countries, such as, India, Srilanka and Pakistan, as food and feed material. The root is high in carbohydrates and rich in zinc. The leaves and stalks are often traditionally preserved to be eaten in dry season. Leaf juice is stimulant, expectorant, astringent, appetizer, and otalgia. Looking at the medicinal uses of the plant leaves; phytochemicals were extracted from the plant leaves and were characterized using Fourier-transform infrared spectroscopy (FTIR) to find the functional groups. Phytochemical analysis of Colocasia esculenta (L.) leaf was studied using three solvents (methanol, chloroform, and ethanol) with soxhlet apparatus. Powder of the leaves was employed to obtain the extracts, which was qualitatively and quantitatively analyzed for phytochemical content using standard methods. Phytochemical constituents were abundant in the leave extract. Leaf was found to have various phytochemicals such as alkaloids, glycosides, flavonoids, terpenoids, saponins, oxalates and phenols etc., which could have lot of medicinal benefits such as reducing headache, treatment of congestive heart failure, prevent oxidative cell damage etc. These phytochemicals were identified using UV spectrophotometer and results were presented. In order to find the antioxidant activity of the extract, DPPH (2,2-diphenyl-1-picrylhydrazyl) method was employed using ascorbic acid as standard. DPPH scavenging activity of ascorbic acid was found to be 84%, whereas for ethanol it was observed to be 78.92%, for methanol: 76.46% and for chloroform: 72.46%. Looking at the high antioxidant activity, Colocasia esculenta may be recommended for medicinal applications. The characterizations of functional groups were analyzed using FTIR spectroscopy.
Keywords: Antioxidant activity, Colocasia esculenta, leaves, characterization, FTIR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18091027 A Comprehensive Analysis for Widespread use of Electric Vehicles
Authors: Yu Zhou, Zhaoyang Dong, Xiaomei Zhao
Abstract:
This paper mainly investigates the environmental and economic impacts of worldwide use of electric vehicles. It can be concluded that governments have good reason to promote the use of electric vehicles. First, the global vehicles population is evaluated with the help of grey forecasting model and the amount of oil saving is estimated through approximate calculation. After that, based on the game theory, the amount and types of electricity generation needed by electronic vehicles are established. Finally, some conclusions on the government-s attitudes are drawn.Keywords: electronic vehicles, grey prediction, game theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16561026 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability
Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana
Abstract:
Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.
Keywords: Goat milk, nutritional quality, bioactive compounds, sustainable production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11151025 Futures Trading: Design of a Strategy
Authors: Jan Zeman
Abstract:
The paper describes the futures trading and aims to design the speculators trading strategy. The problem is formulated as the decision making task and such as is solved. The solution of the task leads to complex mathematical problems and the approximations of the decision making is demanded. Two kind of approximation are used in the paper: Monte Carlo for the multi-step prediction and iteration spread in time for the optimization. The solution is applied to the real-market data and the results of the off-line experiments are presented.Keywords: futures trading, decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11241024 Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.Keywords: Fuzzification, defuzzification, gaussian function, triangular function, trapezoidal function, s-function, , membership function, residual analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23191023 Biaxial Testing of Fabrics - A Comparison of Various Testing Methodologies
Authors: O.B. Ozipek, E. Bozdag, E. Sunbuloglu, A. Abdullahoglu, E. Belen, E. Celikkanat
Abstract:
In textile industry, besides the conventional textile products, technical textile goods, that have been brought external functional properties into, are being developed for technical textile industry. Especially these products produced with weaving technology are widely preferred in areas such as sports, geology, medical, automotive, construction and marine sectors. These textile products are exposed to various stresses and large deformations under typical conditions of use. At this point, sufficient and reliable data could not be obtained with uniaxial tensile tests for determination of the mechanical properties of such products due to mainly biaxial stress state. Therefore, the most preferred method is a biaxial tensile test method and analysis. These tests and analysis is applied to fabrics with different functional features in order to establish the textile material with several characteristics and mechanical properties of the product. Planar biaxial tensile test, cylindrical inflation and bulge tests are generally required to apply for textile products that are used in automotive, sailing and sports areas and construction industry to minimize accidents as long as their service life. Airbags, seat belts and car tires in the automotive sector are also subject to the same biaxial stress states, and can be characterized by same types of experiments. In this study, in accordance with the research literature related to the various biaxial test methods are compared. Results with discussions are elaborated mainly focusing on the design of a biaxial test apparatus to obtain applicable experimental data for developing a finite element model. Sample experimental results on a prototype system are expressed.Keywords: Biaxial Stress, Bulge Test, Cylindrical Inflation, Fabric Testing, Planar Tension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41481022 Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria
Authors: C. I. Abiodun, S. O. Azi, J. S. Ojo, P. Akinyemi
Abstract:
The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.
Keywords: Break-point distances, path loss models, path loss exponent, received signal strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8191021 Rice cDNA Encoding PROLM is Capable of Rescuing Salt Sensitive Yeast Phenotypes G19 and Axt3K from Salt Stress
Authors: Prasad Senadheera, Younousse Saidi, Frans JM Maathuis
Abstract:
Rice seed expression (cDNA) library in the Lambda Zap 11® phage constructed from the developing grain 10-20 days after flowering was transformed into yeast for functional complementation assays in three salt sensitive yeast mutants S. cerevisiae strain CY162, G19 and Axt3K. Transformed cells of G19 and Axt3K with pYES vector with cDNA inserts showed enhance tolerance than those with empty pYes vector. Sequencing of the cDNA inserts revealed that they encode for the putative proteins with the sequence homologous to rice putative protein PROLM24 (Os06g31070), a prolamin precursor. Expression of this cDNA did not affect yeast growth in absence of salt. Axt3k and G19 strains expressing the PROLM24 were able to grow upto 400 mM and 600 mM of NaCl respectively. Similarly, Axt3k mutant with PROLM24 expression showed comparatively higher growth rate in the medium with excess LiCl (50 mM). The observation that expression of PROLM24 rescued the salt sensitive phenotypes of G19 and Axt3k indicates the existence of a regulatory system that ameliorates the effect of salt stress in the transformed yeast mutants. However, the exact function of the cDNA sequence, which shows partial sequence homology to yeast UTR1 is not clear. Although UTR1 involved in ferrous uptake and iron homeostasis in yeast cells, there is no evidence to prove its role in Na+ homeostasis in yeast cells. Absence of transmembrane regions in Os06g31070 protein indicates that salt tolerance is achieved not through the direct functional complementation of the mutant genes but through an alternative mechanism.Keywords: Rice seed expression, salt stress, prolamin, salinitytolerance, Oryza sativa
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19071020 Genetic Algorithms in Hot Steel Rolling for Scale Defect Prediction
Authors: Jarno Haapamäki, Juha Röning
Abstract:
Scale defects are common surface defects in hot steel rolling. The modelling of such defects is problematic and their causes are not straightforward. In this study, we investigated genetic algorithms in search for a mathematical solution to scale formation. For this research, a high-dimensional data set from hot steel rolling process was gathered. The synchronisation of the variables as well as the allocation of the measurements made on the steel strip were solved before the modelling phase.
Keywords: Genetic algorithms, hot strip rolling, knowledge discovery, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3306