Search results for: data grid
7174 Blockchain Based Hydrogen Market: A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change
Authors: Volker Wannack
Abstract:
Regional and global strategies focusing on hydrogen (H2) and blockchain technologies are fueling remarkable advancements. These strategies underpin the revolutionary 'Blockchain Based Hydrogen Market (BBH2)' project, with the primary objective of creating a Blockchain Minimum Viable Product (B-MVP) tailored to the hydrogen market. The B-MVP harnesses blockchain's capabilities, establishing a unified platform for secure, automated transactions via smart contracts. This innovation promises to reshape hydrogen logistics, trade, and transactions. The B-MVP carries transformative potential across diverse sectors, benefiting renewable energy producers, surplus energy-based hydrogen manufacturers, grid operators, and consumers. By implementing standardized, automated, tamper-proof processes, it bolsters cost-efficiency and enables transparent, traceable transactions. Its core mission is to verify the integrity of 'green' hydrogen, tracing its journey from renewable producers to end-users. This emphasis on transparency fosters economic, ecological, and social sustainability within a secure, transparent market. A standout feature of the B-MVP is its cross-border adaptability, obviating the need for nation-specific data storage, and broadening its global reach. This adaptability also spurs long-term job creation by establishing a dedicated blockchain operating firm. By attracting skilled labor and offering training, the B-MVP fortifies the hydrogen sector's workforce. Furthermore, it catalyzes innovative business models, luring more companies and startups, contributing to sustained job growth. For example, data analysis can tailor tariffs to offer demand-centric network capacities to producers and operators, providing tamper-proof pricing options to redistributors and end-customers. Beyond technological and economic progress, the B-MVP amplifies the prominence of national and international standards efforts. The region implementing the B-MVP becomes recognized as a pioneer in climate-friendly, sustainable, and forward-thinking practices, generating interest and attention beyond its geographic boundaries. Additionally, it fosters knowledge transfer between academia and industry, promoting scientific advancements, aligning with innovation management, and nurturing an innovation culture in the hydrogen sector. Through blockchain-hydrogen integration, the B-MVP champions comprehensive innovation, contributing to a sustainable future in the hydrogen industry. Implementation involves evaluating blockchain tech, developing smart contracts, and ensuring interoperability with existing systems. Scalability testing and data format development further validate the B-MVP's potential. BBH2 secures funding under the 'Technology Offensive Hydrogen,' a part of the Federal Ministry of Economics and Climate Protection's 7th Energy Research Program.
Keywords: Hydrogen, blockchain, sustainability, structural change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607173 Fuzzy Based Problem-Solution Data Structureas a Data Oriented Model for ABS Controlling
Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mohamad Teshnelab, Ehsan Shahamatnia
Abstract:
The anti-lock braking systems installed on vehicles for safe and effective braking, are high-order nonlinear and timevariant. Using fuzzy logic controllers increase efficiency of such systems, but impose a high computational complexity as well. The main concept introduced by this paper is reducing computational complexity of fuzzy controllers by deploying problem-solution data structure. Unlike conventional methods that are based on calculations, this approach is based on data oriented modeling.Keywords: ABS, Fuzzy controller, PSDS, Time-Memory tradeoff, Data oriented modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17367172 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.
Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187171 Use of Bayesian Network in Information Extraction from Unstructured Data Sources
Authors: Quratulain N. Rajput, Sajjad Haider
Abstract:
This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22327170 Data Acquisition from Cell Phone using Logical Approach
Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung, Jae-Cheol Ryou
Abstract:
Cell phone forensics to acquire and analyze data in the cellular phone is nowadays being used in a national investigation organization and a private company. In order to collect cellular phone flash memory data, we have two methods. Firstly, it is a logical method which acquires files and directories from the file system of the cell phone flash memory. Secondly, we can get all data from bit-by-bit copy of entire physical memory using a low level access method. In this paper, we describe a forensic tool to acquire cell phone flash memory data using a logical level approach. By our tool, we can get EFS file system and peek memory data with an arbitrary region from Korea CDMA cell phone.Keywords: Forensics, logical method, acquisition, cell phone, flash memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41237169 Data Migration Methodology from Relational to NoSQL Databases
Authors: Mohamed Hanine, Abdesadik Bendarag, Omar Boutkhoum
Abstract:
Currently, the field of data migration is very topical. As the number of applications developed rapidly, the ever-increasing volume of data collected has driven the architectural migration from Relational Database Management System (RDBMS) to NoSQL (Not Only SQL) database. This very recent technology is important enough in the field of database management. The main aim of this paper is to present a methodology for data migration from RDBMS to NoSQL database. To illustrate this methodology, we implement a software prototype using MySQL as a RDBMS and MongoDB as a NoSQL database. Although this is a hard engineering work, our results show that the proposed methodology can successfully accomplish the goal of this study.Keywords: Data Migration, MySQL, RDBMS, NoSQL, MongoDB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43677168 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System
Authors: Ahmad Rouhani, Masoud Jabbari, Sima Honarmand
Abstract:
This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technical and economic. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.Keywords: Hybrid energy system, optimum sizing, power management, TLBO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25617167 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19107166 Learning Spatio-Temporal Topology of a Multi-Camera Network by Tracking Multiple People
Authors: Yunyoung Nam, Junghun Ryu, Yoo-Joo Choi, We-Duke Cho
Abstract:
This paper presents a novel approach for representing the spatio-temporal topology of the camera network with overlapping and non-overlapping fields of view (FOVs). The topology is determined by tracking moving objects and establishing object correspondence across multiple cameras. To track people successfully in multiple camera views, we used the Merge-Split (MS) approach for object occlusion in a single camera and the grid-based approach for extracting the accurate object feature. In addition, we considered the appearance of people and the transition time between entry and exit zones for tracking objects across blind regions of multiple cameras with non-overlapping FOVs. The main contribution of this paper is to estimate transition times between various entry and exit zones, and to graphically represent the camera topology as an undirected weighted graph using the transition probabilities.Keywords: Surveillance, multiple camera, people tracking, topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16517165 Data Hiding by Vector Quantization in Color Image
Authors: Yung-Gi Wu
Abstract:
With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.Keywords: Data hiding, vector quantization, watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17767164 Approximate Range-Sum Queries over Data Cubes Using Cosine Transform
Authors: Wen-Chi Hou, Cheng Luo, Zhewei Jiang, Feng Yan
Abstract:
In this research, we propose to use the discrete cosine transform to approximate the cumulative distributions of data cube cells- values. The cosine transform is known to have a good energy compaction property and thus can approximate data distribution functions easily with small number of coefficients. The derived estimator is accurate and easy to update. We perform experiments to compare its performance with a well-known technique - the (Haar) wavelet. The experimental results show that the cosine transform performs much better than the wavelet in estimation accuracy, speed, space efficiency, and update easiness. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19627163 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies
Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan
Abstract:
The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15717162 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing
Authors: Benjamin Panreck, Manfred Hild
Abstract:
Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.Keywords: Aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10097161 The Feasibility of Augmenting an Augmented Reality Image Card on a Quick Response Code
Authors: Alfred Chen, Shr Yu Lu, Cong Seng Hong, Yur-June Wang
Abstract:
This research attempts to study the feasibility of augmenting an augmented reality (AR) image card on a Quick Response (QR) code. The authors have developed a new visual tag, which contains a QR code and an augmented AR image card. The new visual tag has features of reading both of the revealed data of the QR code and the instant data from the AR image card. Furthermore, a handheld communicating device is used to read and decode the new visual tag, and then the concealed data of the new visual tag can be revealed and read through its visual display. In general, the QR code is designed to store the corresponding data or, as a key, to access the corresponding data from the server through internet. Those reveled data from the QR code are represented in text. Normally, the AR image card is designed to store the corresponding data in 3-Dimensional or animation/video forms. By using QR code's property of high fault tolerant rate, the new visual tag can access those two different types of data by using a handheld communicating device. The new visual tag has an advantage of carrying much more data than independent QR code or AR image card. The major findings of this research are: 1) the most efficient area for the designed augmented AR card augmenting on the QR code is 9% coverage area out of the total new visual tag-s area, and 2) the best location for the augmented AR image card augmenting on the QR code is located in the bottom-right corner of the new visual tag.Keywords: Augmented reality, QR code, Visual tag, Handheldcommunicating device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15567160 A Competitive Replica Placement Methodology for Ad Hoc Networks
Authors: Samee Ullah Khan, C. Ardil
Abstract:
In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution qualityKeywords: Data replication, auctions, static allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14027159 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids
Authors: Pavel Y. Tabakov, Kevin Duffy
Abstract:
The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.Keywords: Classification, clustering, data minig, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17737158 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy
Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo
Abstract:
Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30227157 Zero Truncated Strict Arcsine Model
Authors: Y. N. Phang, E. F. Loh
Abstract:
The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.
Keywords: Hurdle models, maximum likelihood estimation method, positive count data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18577156 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.
Keywords: Communication, LED, Li-Fi, Wi-Fi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21707155 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order
Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi
Abstract:
In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19437154 Business Rules for Data Warehouse
Authors: Rajeev Kaula
Abstract:
Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.Keywords: Business Rules, Data warehouse, PL/SQL ServerPages, Relational model, Web Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29847153 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System
Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu
Abstract:
Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.Keywords: Communication, satellite, data relay system, coverage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14167152 An Efficient Approach to Mining Frequent Itemsets on Data Streams
Authors: Sara Ansari, Mohammad Hadi Sadreddini
Abstract:
The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.Keywords: Data stream, frequent itemset, stream mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14207151 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7447150 AnQL: A Query Language for Annotation Documents
Authors: Neerja Bhatnagar, Ben A. Juliano, Renee S. Renner
Abstract:
This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.
Keywords: Annotation query language, data annotations, data annotation models, semantic data annotations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18467149 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5677148 Computation of Global Voltage Stability Margin in a Practical Power Network Incorporating FACTS in the OPF Frame Work
Authors: P. Nagendra, S. Halder nee Dey, S. Paul, T. Datta
Abstract:
This paper presents a methodology to assess the voltage stability status combined with optimal power flow technique using an instantaneous two-bus equivalent model of power system incorporating static var compensator (SVC) and thyristor controlled series compensator (TCSC) controllers. There by, a generalized global voltage stability indicator being developed has been applied to a robust practical Indian Eastern Grid 203-bus system. Simulation results have proved that the proposed methodology is promising to assess voltage stability of any power system at any operating point in global scenario. Voltage stability augmentation with the application of SVC at the weakest bus and TCSC at critical line connected to the weakest bus is compared with the system having no compensation. In the proposed network equivalent model the generators have been modeled more accurately considering economic criteria.
Keywords: Equivalent two-bus model, global voltage security indicator, optimal power flow, SVC, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20467147 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility
Authors: He Chao, Zhang Lei, Liu Ran, Li Ang
Abstract:
Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keeps the shrouds in the temperature range from -150°C to +150°C. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.Keywords: Space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20087146 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: Instance selection, data reduction, MapReduce, kNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10177145 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted
Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova
Abstract:
The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.
Keywords: Communication protocol, transmission optimization, data acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821