Search results for: Naturally-inspired algorithms and particle swarm optimization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3541

Search results for: Naturally-inspired algorithms and particle swarm optimization.

2911 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique

Authors: A. Jabbari, M. Shakeri, A. Nabavi

Abstract:

In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.

Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503
2910 Design of Encoding Calculator Software for Huffman and Shannon-Fano Algorithms

Authors: Wilson Chanhemo, Henry. R. Mgombelo, Omar F Hamad, T. Marwala

Abstract:

This paper presents a design of source encoding calculator software which applies the two famous algorithms in the field of information theory- the Shannon-Fano and the Huffman schemes. This design helps to easily realize the algorithms without going into a cumbersome, tedious and prone to error manual mechanism of encoding the signals during the transmission. The work describes the design of the software, how it works, comparison with related works, its efficiency, its usefulness in the field of information technology studies and the future prospects of the software to engineers, students, technicians and alike. The designed “Encodia" software has been developed, tested and found to meet the intended requirements. It is expected that this application will help students and teaching staff in their daily doing of information theory related tasks. The process is ongoing to modify this tool so that it can also be more intensely useful in research activities on source coding.

Keywords: Coding techniques, Coding algorithms, Codingefficiency, Encodia, Encoding software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472
2909 The Effect of Granule Size on the Digestibility of Wheat Starch Using an in vitro Model

Authors: Mee-Lin Lim Chai Teo, Darryl M. Small

Abstract:

Wheat has a bimodal starch granule population and the dependency of the rate of enzymatic hydrolysis on particle size has been investigated. Ungelatinised wheaten starch granules were separated into two populations by sedimentation and decantation. Particle size was analysed by laser diffraction and morphological characteristics were viewed using SEM. The sedimentation technique though lengthy, gave satisfactory separation of the granules. Samples (<10μm, >10μm and original) were digested with a-amylase using a dialysis model. Granules of <10μm showed significantly higher rate of reducing sugar release than those >10μm (p<0.05). In contrast, the rate was not significantly different between the original sample and granules >10μm. Moreover, the digestion rate was dependent on particle size whereby smaller granules produced higher rate of release. The methodology and results reported here can be used as a basis for further evaluations designed to delay the release of glucose during the digestion of native starches.

Keywords: in vitro Digestion, a-amylase, wheat starch, granule size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842
2908 Topological Queries on Graph-structured XML Data: Models and Implementations

Authors: Hongzhi Wang, Jianzhong Li, Jizhou Luo

Abstract:

In many applications, data is in graph structure, which can be naturally represented as graph-structured XML. Existing queries defined on tree-structured and graph-structured XML data mainly focus on subgraph matching, which can not cover all the requirements of querying on graph. In this paper, a new kind of queries, topological query on graph-structured XML is presented. This kind of queries consider not only the structure of subgraph but also the topological relationship between subgraphs. With existing subgraph query processing algorithms, efficient algorithms for topological query processing are designed. Experimental results show the efficiency of implementation algorithms.

Keywords: XML, Graph Structure, Topological query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
2907 Improved Algorithms for Construction of Interface Agent Interaction Model

Authors: Huynh Quyet Thang, Le Hai Quan

Abstract:

Interaction Model plays an important role in Modelbased Intelligent Interface Agent Architecture for developing Intelligent User Interface. In this paper we are presenting some improvements in the algorithms for development interaction model of interface agent including: the action segmentation algorithm, the action pair selection algorithm, the final action pair selection algorithm, the interaction graph construction algorithm and the probability calculation algorithm. The analysis of the algorithms also presented. At the end of this paper, we introduce an experimental program called “Personal Transfer System".

Keywords: interface agent, interaction model, user model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
2906 Fault Location Identification in High Voltage Transmission Lines

Authors: Khaled M. El Naggar

Abstract:

This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.

Keywords: Optimization, estimation, faults, measurement, high voltage, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
2905 Application of Ant Colony Optimization for Multi-objective Production Problems

Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat

Abstract:

This paper proposes a meta-heuristic called Ant Colony Optimization to solve multi-objective production problems. The multi-objective function is to minimize lead time and work in process. The problem is related to the decision variables, i.e.; distance and process time. According to decision criteria, the mathematical model is formulated. In order to solve the model an ant colony optimization approach has been developed. The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. One example is given to illustrate the effectiveness of the proposed model. The proposed formulations; Max-Min Ant system are then used to solve the problem and the results evaluate the performance and efficiency of the proposed algorithm using simulation.

Keywords: Ant colony optimization, multi-objective problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
2904 Blind Non-Minimum Phase Channel Identification Using 3rd and 4th Order Cumulants

Authors: S. Safi, A. Zeroual

Abstract:

In this paper we propose a family of algorithms based on 3rd and 4th order cumulants for blind single-input single-output (SISO) Non-Minimum Phase (NMP) Finite Impulse Response (FIR) channel estimation driven by non-Gaussian signal. The input signal represents the signal used in 10GBASE-T (or IEEE 802.3an-2006) as a Tomlinson-Harashima Precoded (THP) version of random Pulse-Amplitude Modulation with 16 discrete levels (PAM-16). The proposed algorithms are tested using three non-minimum phase channel for different Signal-to-Noise Ratios (SNR) and for different data input length. Numerical simulation results are presented to illustrate the performance of the proposed algorithms.

Keywords: Higher Order Cumulants, Channel identification, Ethernet communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
2903 W3-Miner: Mining Weighted Frequent Subtree Patterns in a Collection of Trees

Authors: R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani, M. Rahgozar

Abstract:

Mining frequent tree patterns have many useful applications in XML mining, bioinformatics, network routing, etc. Most of the frequent subtree mining algorithms (i.e. FREQT, TreeMiner and CMTreeMiner) use anti-monotone property in the phase of candidate subtree generation. However, none of these algorithms have verified the correctness of this property in tree structured data. In this research it is shown that anti-monotonicity does not generally hold, when using weighed support in tree pattern discovery. As a result, tree mining algorithms that are based on this property would probably miss some of the valid frequent subtree patterns in a collection of trees. In this paper, we investigate the correctness of anti-monotone property for the problem of weighted frequent subtree mining. In addition we propose W3-Miner, a new algorithm for full extraction of frequent subtrees. The experimental results confirm that W3-Miner finds some frequent subtrees that the previously proposed algorithms are not able to discover.

Keywords: Semi-Structured Data Mining, Anti-Monotone Property, Trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2902 A Query Optimization Strategy for Autonomous Distributed Database Systems

Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

Abstract:

Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.

Keywords: Autonomous strategies, distributed database systems, high priority, query optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
2901 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
2900 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur, Nidhi, Shashi Sharma

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
2899 Treatment of Spin-1/2 Particle in Interaction with a Time-Dependent Magnetic Field by the Fermionic Coherent-State Path-Integral Formalism

Authors: Aouachria Mekki

Abstract:

We consider a spin-1/2 particle interacting with a time-dependent magnetic field using path integral formalism. The propagator is first of all written in the standard form replacing the spin by two fermionic oscillators via the Schwinger model. The propagator is then exactly determined, thanks to a simple transformation, and the transition probability is deduced.

Keywords: Path integral, formalism, Propagator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
2898 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance

Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie

Abstract:

Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.

Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
2897 On a Conjecture Regarding the Adam Optimizer

Authors: Mohamed Akrout, Douglas Tweed

Abstract:

The great success of deep learning relies on efficient optimizers, which are the algorithms that decide how to adjust network weights and biases based on gradient information. One of the most effective and widely used optimizers in recent years has been the method of adaptive moments, or Adam, but the mathematical reasons behind its effectiveness are still unclear. Attempts to analyse its behaviour have remained incomplete, in part because they hinge on a conjecture which has never been proven, regarding ratios of powers of the first and second moments of the gradient. Here we show that this conjecture is in fact false, but that a modified version of it is true, and can take its place in analyses of Adam.

Keywords: Adam optimizer, Bock’s conjecture, stochastic optimization, average regret.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 375
2896 Mean-Square Performance of Adaptive Filter Algorithms in Nonstationary Environments

Authors: Mohammad Shams Esfand Abadi, John Hakon Husøy

Abstract:

Employing a recently introduced unified adaptive filter theory, we show how the performance of a large number of important adaptive filter algorithms can be predicted within a general framework in nonstationary environment. This approach is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. This general performance analysis can be used to evaluate the mean square performance of the Least Mean Square (LMS) algorithm, its normalized version (NLMS), the family of Affine Projection Algorithms (APA), the Recursive Least Squares (RLS), the Data-Reusing LMS (DR-LMS), its normalized version (NDR-LMS), the Block Least Mean Squares (BLMS), the Block Normalized LMS (BNLMS), the Transform Domain Adaptive Filters (TDAF) and the Subband Adaptive Filters (SAF) in nonstationary environment. Also, we establish the general expressions for the steady-state excess mean square in this environment for all these adaptive algorithms. Finally, we demonstrate through simulations that these results are useful in predicting the adaptive filter performance.

Keywords: Adaptive filter, general framework, energy conservation, mean-square performance, nonstationary environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
2895 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
2894 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

Authors: Ali Dorostkar

Abstract:

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

Keywords: Tangent line, fractional dimension, root, optimization problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
2893 Automatic Vehicle Identification by Plate Recognition

Authors: Serkan Ozbay, Ergun Ercelebi

Abstract:

Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition.

Keywords: Character recognizer, license plate recognition, plate region extraction, segmentation, smearing, template matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7586
2892 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix

Authors: Tao Dai, Andy Adler, Behnam Shahrrava

Abstract:

This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.

Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
2891 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: Axial voidage, circulating fluidized bed, splash zone, static bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
2890 Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies

Authors: R. Rajeshkannan, M. Rajasimman, N. Rajamohan

Abstract:

In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.

Keywords: Response surface methodology, Hydrilla verticillata, malachite green, adsorption, central composite design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
2889 Object Tracking System Using Camshift, Meanshift and Kalman Filter

Authors: Afef Salhi, Ameni Yengui Jammaoussi

Abstract:

This paper presents a implementation of an object tracking system in a video sequence. This object tracking is an important task in many vision applications. The main steps in video analysis are two: detection of interesting moving objects and tracking of such objects from frame to frame. In a similar vein, most tracking algorithms use pre-specified methods for preprocessing. In our work, we have implemented several object tracking algorithms (Meanshift, Camshift, Kalman filter) with different preprocessing methods. Then, we have evaluated the performance of these algorithms for different video sequences. The obtained results have shown good performances according to the degree of applicability and evaluation criteria.

Keywords: Tracking, meanshift, camshift, Kalman filter, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8250
2888 Optimization Technique in Scheduling Duck Tours

Authors: Norhazwani M. Y., Khoo, C. F., Hasrul Nisham R.

Abstract:

Tourism industries are rapidly increased for the last few years especially in Malaysia. In order to attract more tourists, Malaysian Governance encourages any effort to increase Malaysian tourism industry. One of the efforts in attracting more tourists in Malacca, Malaysia is a duck tour. Duck tour is an amphibious sightseeing tour that works in two types of engines, hence, it required a huge cost to operate and maintain the vehicle. To other country, it is not so new but in Malaysia, it is just introduced, thus it does not have any systematic routing yet. Therefore, this paper proposed an optimization technique to formulate and schedule this tour to minimize the operating costs by considering it into Travelling Salesman Problem (TSP). The problem is then can be solved by one of the optimization technique especially meta-heuristics approach such as Tabu Search (TS) and Reactive Tabu Search (RTS).

Keywords: Optimization, Reactive Tabu Search, Tabu Search, Travelling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
2887 Using Data Mining Techniques for Estimating Minimum, Maximum and Average Daily Temperature Values

Authors: S. Kotsiantis, A. Kostoulas, S. Lykoudis, A. Argiriou, K. Menagias

Abstract:

Estimates of temperature values at a specific time of day, from daytime and daily profiles, are needed for a number of environmental, ecological, agricultural and technical applications, ranging from natural hazards assessments, crop growth forecasting to design of solar energy systems. The scope of this research is to investigate the efficiency of data mining techniques in estimating minimum, maximum and mean temperature values. For this reason, a number of experiments have been conducted with well-known regression algorithms using temperature data from the city of Patras in Greece. The performance of these algorithms has been evaluated using standard statistical indicators, such as Correlation Coefficient, Root Mean Squared Error, etc.

Keywords: regression algorithms, supervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3418
2886 Comprehensive Evaluation on China-s Industrial Structure Optimization from the Perspective of Coordination

Authors: Ying Wang

Abstract:

From the perspective of industrial structure coordination and based on an explicit definition for the connotation of industrial structure coordination, the synergetic coefficients are used to measure the coordination degree between three industries' input structure and output structure, and then the efficacy function method is employed to comprehensively evaluate the level of China-s industrial structure optimization. It is showed that Chinese industrial structure presented a "v-shaped" variation tendency between 1996 and 2008, and its industrial structure adjustment got obvious achievements after 2003, with the industrial structure optimization level increasing continuously. However in 2009, the level of China-s industrial structure optimization declined sharply due to the decreasing contribution degree of value added structure and energy structure coordination and the lower coordination degree of value added structure and capital structure.

Keywords: China's industrial structure, Coordination degree, Efficacy function, Synergetic coefficients

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
2885 Density Clustering Based On Radius of Data (DCBRD)

Authors: A.M. Fahim, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.

Keywords: Clustering Algorithms, Arbitrary Shape of clusters, cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
2884 The Performance of the Character-Access on the Checking Phase in String Searching Algorithms

Authors: Mahmoud M. Mhashi

Abstract:

A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed; the results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Circle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of comparisons are improved up to 74.0%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 28% to 68% by the new CCCA algorithm

Keywords: Pattern matching, string searching, charactercomparison, character-access, and checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
2883 Bee Colony Optimization Applied to the Bin Packing Problem

Authors: Kenza Aida Amara, Bachir Djebbar

Abstract:

We treat the two-dimensional bin packing problem which involves packing a given set of rectangles into a minimum number of larger identical rectangles called bins. This combinatorial problem is NP-hard. We propose a pretreatment for the oriented version of the problem that allows the valorization of the lost areas in the bins and the reduction of the size problem. A heuristic method based on the strategy first-fit adapted to this problem is presented. We present an approach of resolution by bee colony optimization. Computational results express a comparison of the number of bins used with and without pretreatment.

Keywords: Bee colony optimization, bin packing, heuristic algorithm, pretreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
2882 A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization

Authors: Sasadhar Bera, Indrajit Mukherjee

Abstract:

Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.

Keywords: Ant Colony Optimization, Diversification Scheme, Intensification, Mahalanobis Distance, Nelder-Mead Simplex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745