Search results for: positive count data.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8496

Search results for: positive count data.

7896 Extreme Temperature Forecast in Mbonge, Cameroon through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the Generalized extreme value(GEV) distribution to analyse temperature data from the Cameroon Development Corporation (C.D.C). By considering two sets of data (Raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data while in the simulated data, the return values show an increasing trend but with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend but with an upper bound. This clearly shows that temperatures in the tropics even-though show a sign of increasing in the future, there is a maximum temperature at which there is no exceedence. The results of this paper are very vital in Agricultural and Environmental research.

Keywords: Return level, Generalized extreme value (GEV), Meteorology, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
7895 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
7894 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data

Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon

Abstract:

Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.

Keywords: Ant colony system, biological data, clustering, DNA chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
7893 The Resource Description Framework (RDF) as a Modern Structure for Medical Data

Authors: Gabriela Lindemann, Danilo Schmidt, Thomas Schrader, Dietmar Keune

Abstract:

The amount and heterogeneity of data in biomedical research, notably in interdisciplinary fields, requires new methods for the collection, presentation and analysis of information. Important data from laboratory experiments as well as patient trials are available but come out of distributed resources. The Charité - University Hospital Berlin has established together with the German Research Foundation (DFG) a new information service centre for kidney diseases and transplantation (Open European Nephrology Science Centre - OpEN.SC). Beside a collaborative aspect to create new research groups every single partner or institution of this science information centre making his own data available is allowed to search the whole data pool of the various involved centres. A core task is the implementation of a non-restricting open data structure for the various different data sources. We decided to use a modern RDF model and in a first phase transformed original data coming from the web-based Electronic Patient Record database TBase©.

Keywords: Medical databases, Resource Description Framework (RDF), metadata repository.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
7892 Electronic Nose Based On Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Oat Milk

Authors: A. Deswal, N. S. Deora, H. N. Mishra

Abstract:

The aim of the present study was to develop a rapid method for electronic nose for online quality control of oat milk. Analysis by electronic nose and bacteriological measurements were performed to analyze spoilage kinetics of oat milk samples stored at room temperature and refrigerated conditions for up to 15 days. Principal component analysis (PCA), Discriminant Factorial Analysis (DFA) and Soft Independent Modelling by Class Analogy (SIMCA) classification techniques were used to differentiate the samples of oat milk at different days. The total plate count (bacteriological method) was selected as the reference method to consistently train the electronic nose system. The e-nose was able to differentiate between the oat milk samples of varying microbial load. The results obtained by the bacteria total viable countsshowed that the shelf-life of oat milk stored at room temperature and refrigerated conditions were 20hrs and 13 days, respectively. The models built classified oat milk samples based on the total microbial population into “unspoiled” and “spoiled”.

Keywords: Electronic-nose, bacteriological, shelf-life, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
7891 Multiple Organ Manifestation in Neonatal Lupus Erythematous (Report of Two Cases)

Authors: Lubis A., Widayanti R., Hikmah Z., Endaryanto A., Harsono A., Harianto A., Etika R., Handayani D. K., Sampurna M.

Abstract:

Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.

Keywords: Neonatus lupus erythematous, maternal autoantibody, clinical characteristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
7890 XML Data Management in Compressed Relational Database

Authors: Hongzhi Wang, Jianzhong Li, Hong Gao

Abstract:

XML is an important standard of data exchange and representation. As a mature database system, using relational database to support XML data may bring some advantages. But storing XML in relational database has obvious redundancy that wastes disk space, bandwidth and disk I/O when querying XML data. For the efficiency of storage and query XML, it is necessary to use compressed XML data in relational database. In this paper, a compressed relational database technology supporting XML data is presented. Original relational storage structure is adaptive to XPath query process. The compression method keeps this feature. Besides traditional relational database techniques, additional query process technologies on compressed relations and for special structure for XML are presented. In this paper, technologies for XQuery process in compressed relational database are presented..

Keywords: XML, compression, query processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
7889 Optimization of Technical and Technological Solutions for the Development of Offshore Hydrocarbon Fields in the Kaliningrad Region

Authors: Pavel Shcherban, Viktoria Ivanova, Alexander Neprokin, Vladislav Golovanov

Abstract:

Currently, LLC «Lukoil-Kaliningradmorneft» is implementing a comprehensive program for the development of offshore fields of the Kaliningrad region. This is largely associated with the depletion of the resource base of land in the region, as well as the positive results of geological investigation surrounding the Baltic Sea area and the data on the volume of hydrocarbon recovery from a single offshore field are working on the Kaliningrad region – D-6 «Kravtsovskoye».The article analyzes the main stages of the LLC «Lukoil-Kaliningradmorneft»’s development program for the development of the hydrocarbon resources of the region's shelf and suggests an optimization algorithm that allows managing a multi-criteria process of development of shelf deposits. The algorithm is formed on the basis of the problem of sequential decision making, which is a section of dynamic programming. Application of the algorithm during the consolidation of the initial data, the elaboration of project documentation, the further exploration and development of offshore fields will allow to optimize the complex of technical and technological solutions and increase the economic efficiency of the field development project implemented by LLC «Lukoil-Kaliningradmorneft».

Keywords: Offshore fields of hydrocarbons of the Baltic Sea, Development of offshore oil and gas fields, Optimization of the field development scheme, Solution of multi-criteria tasks in the oil and gas complex, Quality management of technical and technological processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
7888 A System for Analyzing and Eliciting Public Grievances Using Cache Enabled Big Data

Authors: P. Kaladevi, N. Giridharan

Abstract:

The system for analyzing and eliciting public grievances serves its main purpose to receive and process all sorts of complaints from the public and respond to users. Due to the more number of complaint data becomes big data which is difficult to store and process. The proposed system uses HDFS to store the big data and uses MapReduce to process the big data. The concept of cache was applied in the system to provide immediate response and timely action using big data analytics. Cache enabled big data increases the response time of the system. The unstructured data provided by the users are efficiently handled through map reduce algorithm. The processing of complaints takes place in the order of the hierarchy of the authority. The drawbacks of the traditional database system used in the existing system are set forth by our system by using Cache enabled Hadoop Distributed File System. MapReduce framework codes have the possible to leak the sensitive data through computation process. We propose a system that add noise to the output of the reduce phase to avoid signaling the presence of sensitive data. If the complaints are not processed in the ample time, then automatically it is forwarded to the higher authority. Hence it ensures assurance in processing. A copy of the filed complaint is sent as a digitally signed PDF document to the user mail id which serves as a proof. The system report serves to be an essential data while making important decisions based on legislation.

Keywords: Big Data, Hadoop, HDFS, Caching, MapReduce, web personalization, e-governance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
7887 A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

Authors: T. Vigneswaran, B. Mukundhan, P. Subbarami Reddy

Abstract:

Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. In addition to its main task, which is adding two numbers, it participates in many other useful operations such as subtraction, multiplication, division,, address calculation,..etc. In most of these systems the adder lies in the critical path that determines the overall speed of the system. So enhancing the performance of the 1-bit full adder cell (the building block of the adder) is a significant goal.Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose a new low power adder cell by sacrificing the MOS Transistor count that reduces the serious threshold loss problem, considerably increases the speed and decreases the power when compared to the static energy recovery full (SERF) adder. So a new improved 14T CMOS l-bit full adder cell is presented in this paper. Results show 50% improvement in threshold loss problem, 45% improvement in speed and considerable power consumption over the SERF adder and other different types of adders with comparable performance.

Keywords: Arithmetic circuit, full adder, multiplier, low power, very Large-scale integration (VLSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3959
7886 Improved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure

Authors: S.Aranganayagi, K.Thangavel

Abstract:

K-Modes is an extension of K-Means clustering algorithm, developed to cluster the categorical data, where the mean is replaced by the mode. The similarity measure proposed by Huang is the simple matching or mismatching measure. Weight of attribute values contribute much in clustering; thus in this paper we propose a new weighted dissimilarity measure for K-Modes, based on the ratio of frequency of attribute values in the cluster and in the data set. The new weighted measure is experimented with the data sets obtained from the UCI data repository. The results are compared with K-Modes and K-representative, which show that the new measure generates clusters with high purity.

Keywords: Clustering, categorical data, K-Modes, weighted dissimilarity measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3690
7885 Mobile Phone as a Tool for Data Collection in Field Research

Authors: Sandro Mourão, Karla Okada

Abstract:

The necessity of accurate and timely field data is shared among organizations engaged in fundamentally different activities, public services or commercial operations. Basically, there are three major components in the process of the qualitative research: data collection, interpretation and organization of data, and analytic process. Representative technological advancements in terms of innovation have been made in mobile devices (mobile phone, PDA-s, tablets, laptops, etc). Resources that can be potentially applied on the data collection activity for field researches in order to improve this process. This paper presents and discuss the main features of a mobile phone based solution for field data collection, composed of basically three modules: a survey editor, a server web application and a client mobile application. The data gathering process begins with the survey creation module, which enables the production of tailored questionnaires. The field workforce receives the questionnaire(s) on their mobile phones to collect the interviews responses and sending them back to a server for immediate analysis.

Keywords: Data Gathering, Field Research, Mobile Phone, Survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
7884 The Impact of Female Characters on a Movie’s Return on Investment

Authors: Raghav Lakhotia, Sameer Ganu, Anshul Goel, Abhishek Kumar

Abstract:

In the age and times where women’s empowerment is a significant topic of discussion, we aim to analyze the potential gender diversity influence on box office revenues. The following research is carried out by collecting data from 400 Hollywood movies between the years 2014-2017 and performing regression analysis to find a correlation between the presence of female characters in movies and their return on investment (ROI). The paper finds that there is a positive relationship between the performance of the movies (its ROI) and the gender diversity i.e. the more the number of female characters, the higher the revenue generated. Another factor such as Number of Votes also has a direct impact on the revenue of the movie. The research not only takes into consideration the mere presence of women on screen but also the exchange of at least one dialogue among themselves, which is presented by the Bechdel Score of the movie.

Keywords: Bechdel, diversity, Hollywood, return on investment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
7883 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
7882 The First Prevalence Report of Direct Identification and Differentiation of B. abortus and B. melitensis using Real Time PCR in House Mouse of Iran

Authors: A. Doosti, S. Moshkelani

Abstract:

Brucellosis is a zoonotic disease; its symptoms and appearances are not exclusive in human and its traditional diagnosis is based on culture, serological methods and conventional PCR. For more sensitive, specific detection and differentiation of Brucella spp., the real time PCR method is recommended. This research has performed to determine the presence and prevalence of Brucella spp. and differentiation of Brucella abortus and Brucella melitensis in house mouse (Mus musculus) in west of Iran. A TaqMan analysis and single-step PCR was carried out in total 326 DNA of Mouse's spleen samples. From the total number of 326 samples, 128 (39.27%) gave positive results for Brucella spp. by conventional PCR, also 65 and 32 out of the 128 specimens were positive for B. melitensis, B. abortus, respectively. These results indicate a high presence of this pathogen in this area and that real time PCR is considerably faster than current standard methods for identification and differentiation of Brucella species. To our knowledge, this study is the first prevalence report of direct identification and differentiation of B. abortus and B. melitensis by real time PCR in mouse tissue samples in Iran.

Keywords: Differentiation, B. abortus, B. melitensis, TaqManprobe, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
7881 Multivariate Assessment of Mathematics Test Scores of Students in Qatar

Authors: Ali Rashash Alzahrani, Elizabeth Stojanovski

Abstract:

Data on various aspects of education are collected at the institutional and government level regularly. In Australia, for example, students at various levels of schooling undertake examinations in numeracy and literacy as part of NAPLAN testing, enabling longitudinal assessment of such data as well as comparisons between schools and states within Australia. Another source of educational data collected internationally is via the PISA study which collects data from several countries when students are approximately 15 years of age and enables comparisons in the performance of science, mathematics and English between countries as well as ranking of countries based on performance in these standardised tests. As well as student and school outcomes based on the tests taken as part of the PISA study, there is a wealth of other data collected in the study including parental demographics data and data related to teaching strategies used by educators. Overall, an abundance of educational data is available which has the potential to be used to help improve educational attainment and teaching of content in order to improve learning outcomes. A multivariate assessment of such data enables multiple variables to be considered simultaneously and will be used in the present study to help develop profiles of students based on performance in mathematics using data obtained from the PISA study.

Keywords: Cluster analysis, education, mathematics, profiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
7880 DIVAD: A Dynamic and Interactive Visual Analytical Dashboard for Exploring and Analyzing Transport Data

Authors: Tin Seong Kam, Ketan Barshikar, Shaun Tan

Abstract:

The advances in location-based data collection technologies such as GPS, RFID etc. and the rapid reduction of their costs provide us with a huge and continuously increasing amount of data about movement of vehicles, people and goods in an urban area. This explosive growth of geospatially-referenced data has far outpaced the planner-s ability to utilize and transform the data into insightful information thus creating an adverse impact on the return on the investment made to collect and manage this data. Addressing this pressing need, we designed and developed DIVAD, a dynamic and interactive visual analytics dashboard to allow city planners to explore and analyze city-s transportation data to gain valuable insights about city-s traffic flow and transportation requirements. We demonstrate the potential of DIVAD through the use of interactive choropleth and hexagon binning maps to explore and analyze large taxi-transportation data of Singapore for different geographic and time zones.

Keywords: Geographic Information System (GIS), MovementData, GeoVisual Analytics, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
7879 Value-Relevance of Accounting Information:Evidence from Iranian Emerging Stock Exchange

Authors: Ali Faal Ghayoumi, Mahmoud Dehghan Nayeri, Manouchehre Ansari, Taha Raeesi

Abstract:

This study aims to investigate empirically the valuerelevance of accounting information to domestic investors in Tehran stock exchange from 1999 to 2006. During the present research impacts of two factors, including positive vs. negative earnings and the firm size are considered as well. The authors used earnings per share and annual change of earnings per share as the income statement indices, and book value of equity per share as the balance sheet index. Return and Price models through regression analysis are deployed in order to test the research hypothesis. Results depicted that accounting information is value-relevance to domestic investors in Tehran Stock Exchange according to both studied models. However, income statement information has more value-relevance than the balance sheet information. Furthermore, positive vs. negative earnings and firm size seems to have significant impact on valuerelevance of accounting information.

Keywords: Value-Relevance of Accounting Information, Iranianstock exchange, Return Model, Price Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
7878 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
7877 Determining Cluster Boundaries Using Particle Swarm Optimization

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.

Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
7876 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
7875 Autonomic Management for Mobile Robot Battery Degradation

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks.

Keywords: Autonomic, self-adaptive, self-optimizing, degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
7874 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Marque Adrien, Delahaye Daniel, Marechal Pierre, Berry Isabelle

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: Wind direction, uncertainty level, Unmanned Aerial Vehicle, convolution neural network, SPD matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30
7873 Strategic Development for a Diverse Population in the Urban Core

Authors: Andreas L. Savvides

Abstract:

These This paper looks into frameworks which aim at furthering the discussion of the role of regenerative design practices in a city-s historic core and the tool of urban design to achieve urban revitalization on the island of Cyprus. It also examines the region-s demographic mix, the effectiveness of its governmental coordination and the strategies of adaptive reuse and strategic investments in older areas with existing infrastructure. The two main prongs of investigation will consider the effect of the existing and proposed changes in the physical infrastructure and fabric of the city, as well as the catalytic effect of sustainable urban design practices. Through this process, the work hopes to integrate the contained potential within the existing historic core and the contributions and participation of the migrant and immigrant populations to the local economy. It also examines ways in which this coupling of factors can bring to the front the positive effects of this combined effort on an otherwise sluggish local redevelopment effort. The data for this study is being collected and organized as part of ongoing urban design and development student workshop efforts in urban planning and design education. The work is presented in graphic form and includes data collected from interviews with study area organizations and the community at large. Planning work is also based on best practices initiated by the staff of the Nicosia Master Plan task force, which coordinates holistic planning efforts for the historic center of the city of Nicosia.

Keywords: Urban Design, Urban Development, Urban Regeneration, Historic Core, Cultural Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
7872 Awareness and Attitudes of Primary Grade Teachers (1-4thGrade) towards Inclusive Education

Authors: P. Maheshwari, M. Shapurkar

Abstract:

The present research aimed at studying the awareness and attitudes of teachers towards inclusive education. The sample consisted of 60 teachers, teaching in the primary section (1st – 4th) of regular schools affiliated to the SSC board in Mumbai. Sample was selected by Multi-stage cluster sampling technique. A semi-structured self-constructed interview schedule and a self-constructed attitude scale was used to study the awareness of teachers about disability and Inclusive education, and their attitudes towards inclusive education respectively. Themes were extracted from the interview data and quantitative data was analyzed using SPSS package. Results revealed that teachers had some amount of awareness but an inadequate amount of information on disabilities and inclusive education. Disability to most (37) teachers meant “an inability to do something”. The difference between disability and handicap was stated by most as former being cognitive while handicap being physical in nature. With regard to Inclusive education, a large number (46) stated that they were unaware of the term and did not know what it meant. Majority (52) of them perceived maximum challenges for themselves in an inclusive set up, and emphasized on the role of teacher training courses in the area of providing knowledge (49) and training in teaching methodology (53). Although, 83.3% of teachers held a moderately positive attitude towards inclusive education, a large percentage (61.6%) of participants felt that being in inclusive set up would be very challenging for both children with special needs and without special needs. Though, most (49) of the teachers stated that children with special needs should be educated in regular classroom but they further clarified that only those should be in a regular classroom who have physical impairments of mild or moderate degree.

Keywords: Attitudes, awareness, inclusive education, teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
7871 A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain

Authors: Hiroaki Nasu, Ryota Miyamoto, Yuta Kodera, Yasuyuki Nogami

Abstract:

To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of the manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. Blockchain mechanism such as Bitcoin using Public Key Infrastructure (PKI) requires plaintext to be shared between companies in order to verify the identity of the company that sent the data. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems, this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is top-secret. In this scenario, we show an implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data.

Keywords: Business to business data collaboration, industrial supply chain, blockchain, homomorphic encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
7870 Improving the Quality of e-learning Courses in Higher Education through Student Satisfaction

Authors: Susana Lemos, Neuza Pedro

Abstract:

Thepurpose of the research is to characterize the levels of satisfaction of the students in e-learning post-graduate courses, taking into account specific dimensions of the course which were considered as benchmarks for the quality of this type of online learning initiative, as well as the levels of satisfaction towards each specific indicator identified in each dimension. It was also an aim of this study to understand how thesedimensions relate to one another. Using a quantitative research approach in the collection and analysis of the data, the study involves the participation of the students who attended on e-learning course in 2010/2011. The conclusions of this study suggest that online students present relatively high levels of satisfaction, which points towards a positive experience during the course. It is possible to note that there is a correlation between the different dimensions studied, consequently leading to different improvement strategies. Ultimately, this investigation aims to contribute to the promotion of quality and the success of e-learning initiatives in Higher Education.

Keywords: e-learning, higher education, quality, students satisfaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
7869 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
7868 Automatic Generation of Ontology from Data Source Directed by Meta Models

Authors: Widad Jakjoud, Mohamed Bahaj, Jamal Bakkas

Abstract:

Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.

Keywords: Meta model, model, ontology, data source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
7867 Steps towards the Development of National Health Data Standards in Developing Countries: An Exploratory Qualitative Study in Saudi Arabia

Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian R. Murray

Abstract:

The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.

Keywords: Interoperability, Case Study, Health Data Standards, Medical Data Exchange, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002