Search results for: Wheat yields prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1370

Search results for: Wheat yields prediction

770 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit

Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao

Abstract:

The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.

Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651
769 Neural Network Imputation in Complex Survey Design

Authors: Safaa R. Amer

Abstract:

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

Keywords: Complex survey, estimate, imputation, neural networks, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
768 Stature Estimation Using Foot and Shoeprint Length of Malaysian Population

Authors: M. Khairulmazidah, A. B. Nurul Nadiah, A. R. Rumiza

Abstract:

Formulation of biological profile is one of the modern roles of forensic anthropologist. The present study was conducted to estimate height using foot and shoeprint length of Malaysian population. The present work can be very useful information in the process of identification of individual in forensic cases based on shoeprint evidence. It can help to narrow down suspects and ease the police investigation. Besides, stature is important parameters in determining the partial identify of unidentified and mutilated bodies. Thus, this study can help the problem encountered in cases of mass disaster, massacre, explosions and assault cases. This is because it is very hard to identify parts of bodies in these cases where people are dismembered and become unrecognizable. Samples in this research were collected from 200 Malaysian adults (100 males and 100 females) with age ranging from 20 to 45 years old. In this research, shoeprint length were measured based on the print of the shoes made from the flat shoes. Other information like gender, foot length and height of subject were also recorded. The data was analyzed using IBM® SPSS Statistics 19 software. Results indicated that, foot length has a strong correlation with stature than shoeprint length for both sides of the feet. However, in the unknown, where the gender was undetermined have shown a better correlation in foot length and shoeprint length parameter compared to males and females analyzed separately. In addition, prediction equations are developed to estimate the stature using linear regression analysis of foot length and shoeprint length. However, foot lengths give better prediction than shoeprint length. 

Keywords: Forensic anthropology, foot length, shoeprints, stature estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3056
767 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining

Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride

Abstract:

In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.

Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
766 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: Biometrics, identity verification, genetic data, k-nearest neighbor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
765 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: Land suitability, machine learning, random forest, sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283
764 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms

Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto

Abstract:

In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.

Keywords: Capacity-booking, SPA, monthly production planning, linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
763 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
762 Effect of Restaurant Fat on Milk Yield and Composition of Dairy Cows Limit-Fed Concentrate Diet with Free Access to Forage

Authors: Mofleh S. Awawdeh

Abstract:

Ten lactating multiparous Holstein cows were used in a cross-over design with two dietary treatments and 28-d periods (with 14 d as an adaptation) to study the effect of restaurant fat on milk production and composition. Each cow was offered 14.7 kg DM /d of the basal concentrate diet based on barley and corn (crude protein = 17.7%, neutral detergent fiber = 23.5%, and acid detergent fiber = 5.8% of dry matter) with free access to alfalfa. Dietary treatments were arranged as supplying each cow with 0 (CONTROL) or 150 g/day (RF) of restaurant fat. Supplemental RF did not significantly (P > 0.25) affect milk yield, composition, and composition yields, except for milk fat contents. Milk fat contents were depressed (P < 0.05) with supplemental RF. Our results indicate that RF could depress milk fat without affecting milk yield and that the depression in milk fat in response to RF precedes the depression in milk yield.

Keywords: Dairy Cows, Restaurant Fat, Lipids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
761 The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep

Authors: Mustafa Salman, Nurcan Cetinkaya, Zehra Selcuk, Bugra Genc

Abstract:

The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient.

In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model.

Keywords: Karayaka sheep, spot sampling, urinary purine derivatives, PDC index, microbial-N, feed intake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
760 Microwave Plasma Dry Reforming of Methane at High CO2/CH4 Feed Ratio

Authors: Nabil Majd Alawi, Gia Hung Pham, Ahmed Barifcani

Abstract:

Dry reforming of methane that converts two greenhouses gases (CH4 and CO2) to synthesis gas (a mixture of H2 and CO) was studied in a commercial bench scale microwave (MW) plasma reactor system at atmospheric pressure. The CO2, CH4 and N2 conversions; H2, CO selectivities and yields, and syngas ratio (H2/CO) were investigated in a wide range of total feed flow rate (0.45 – 2.1 L/min), MW power (700 – 1200 watt) and CO2/CH4 molar ratio (2 – 5). At the feed flow rates of CH4, CO2 and N2 of 0.2, 0.4 and 1.5 L/min respectively, and the MWs input power of 700 W, the highest conversions of CH4 and CO2, selectivity and yield of H2, CO and H2/CO ratio of 79.35%, 44.82%, 50.12, 58.42, 39.77%, 32.89%, and 0.86, respectively, were achieved. The results of this work show that the product ratio increases slightly with the increasing total feed flow rate, but it decreases significantly with the increasing MW power and feeds CO2/CH4 ratio.

Keywords: Atmospheric pressure, methane dry reforming, microwave plasma, synthesis gas production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
759 Investigation of Physicochemical Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date Syrup

Authors: Marzieh Moosavi-Nasab, Ali R. Yousefi

Abstract:

Bacterial cellulose, a biopolysaccharide, is produced by the bacterium, Gluconacetobacter xylinus. Static batch fermentation for bacterial cellulose production was studied in sucrose and date syrup solutions (Bx. 10%) at 28 °C using G. xylinus (PTCC, 1734). Results showed that the maximum yields of bacterial cellulose (BC) were 4.35 and 1.69 g/l00 ml for date syrup and sucrose medium after 336 hours fermentation period, respectively. Comparison of FTIR spectrum of cellulose with BC indicated appropriate coincidence which proved that the component produced by G. xylinus was cellulose. Determination of the area under X-ray diffractometry patterns demonstrated that the crystallinity amount of cellulose (83.61%) was more than that for the BC (60.73%). The scanning electron microscopy imaging of BC and cellulose were carried out in two magnifications of 1 and 6K. Results showed that the diameter ratio of BC to cellulose was approximately 1/30 which indicated more delicacy of BC fibers relative to cellulose.

Keywords: Gluconacetobacter xylinus, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, X-ray diffractometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3140
758 Tailoring the Sharpness of Tungsten Nanotips via Laser Irradiation Enhanced Etching in KOH

Authors: D. D. Wang, J.C. Lam, Z. H. Mai

Abstract:

Controlled modification of appropriate sharpness for nanotips is of paramount importance to develop novel materials and functional devices at a nanometer resolution. Herein, we present a reliable and unique strategy of laser irradiation enhanced physicochemical etching to manufacture super sharp tungsten tips with reproducible shape and dimension as well as high yields (~80%). The corresponding morphology structure evolution of tungsten tips and laser-tip interaction mechanisms were systematically investigated and discussed using field emission scanning electron microscope (SEM) and physical optics statistics method with different fluences under 532 nm laser irradiation. This work paves the way for exploring more accessible metallic tips applications with tunable apex diameter and aspect ratio, and, furthermore, facilitates the potential sharpening enhancement technique for other materials used in a variety of nanoscale devices.

Keywords: Tungsten tip sharpening, Laser irradiation, Physicochemical etching, Light-matter interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
757 Correlation between the Sowing Date and the Yield of Maize on Chernozem Soil, in Connection with the Leaf Area Index and the Photosynthesis

Authors: E. Bene

Abstract:

Our sowing date experiment took place in the Demonstration Garden of Institution of Plant Sciences, Centre for Agricultural Sciences of University of Debrecen, in 2012-2014. The paper contains data of test year 2014. Our purpose, besides several other examinations, was to observe how sowing date influences the leaf area index and the activity of photosynthesis of maize hybrids, and how those factors affect fruiting. In the experiment we monitored the change of the leaf area index and the photosynthesis of hybrids with four different growing seasons. The results obtained confirm that not only the environmental and agricultural factors in the growing season have effect on the yield, but also other factors like the leaf area index and the photosynthesis are determinative parameters, and all those factors together, modifying the effects of each other, develop average yields.

Keywords: Sowing date, hybrid, leaf area index, photosynthetic capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
756 A Modified Spiral Search Algorithm and Its Embedded System Architecture Design

Authors: Nikolaos Kroupis, Minas Dasygenis, Dimitrios Soudris, Antonios Thanailakis

Abstract:

One of the most growing areas in the embedded community is multimedia devices. Multimedia devices incorporate a number of complicated functions for their operation, like motion estimation. A multitude of different implementations have been proposed to reduce motion estimation complexity, such as spiral search. We have studied the implementations of spiral search and identified areas of improvement. We propose a modified spiral search algorithm, with lower computational complexity compared to the original spiral search. We have implemented our algorithm on an embedded ARM based architecture, with custom memory hierarchy. The resulting system yields energy consumption reduction up to 64% and performance increase up to 77%, with a small penalty of 2.3 dB, in average, of video quality compared with the original spiral search algorithm.

Keywords: Spiral Search, Motion Estimation, Embedded Systems, Low Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
755 An Investigation into Air Ejector with Pulsating Primary Flow

Authors: Václav Dvořák, Petra Dančová

Abstract:

The article deals with pneumatic and hot wire anemometry measurement on subsonic axi-symmetric air ejector. Performances of the ejector with and without pulsations of primary flow are compared, measuring of characteristic pressures and mass flow rates are performed and ejector efficiency is evaluated. The pulsations of primary flow are produced by a synthetic jet generator, which is placed in the supply line of the primary flow just in front of the primary nozzle. The aim of the pulsation is to intensify the mixing process. In the article we present: Pressure measuring of pulsation on the mixing chamber wall, behind the mixing chamber and behind the diffuser measured by fast pressure transducers and results of hot wire anemometry measurement. It was found out that using of primary flow pulsations yields higher back pressure behind the ejector and higher efficiency. The processes in this ejector and influences of primary flow pulsations on the mixing processes are described.

Keywords: Air ejector, pulsation flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
754 FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, Pasta, moisture determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
753 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk (In High Speed Circuits)

Authors: L. Tani, N. El Ouzzani

Abstract:

Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in highspeed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.

Keywords: Multiconductor transmission line, Crosstalk, Finite difference time domain (FDTD), printed-circuit board (PCB), Rise time, Statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
752 Effects of Adding Different Levels of Anaerobic Fungi on Cellulase Activity of Ostrich Digestive Tract-s Microorganisms under in Vitro Condition

Authors: Seyed Azizollah Ghotb, Mohammad Chamani, Elmira Abdollahzadeh Esmaeili, Farhad Foroudi

Abstract:

the objective of this study is to measure the levels of cellulas activity of ostrich GI microorganisms, and comparing it with the levels of cellulas activity of rumen-s microorganisms, and also to estimate the probability of increasing enzyme activity with injecting different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi. The experiment was conducted in laboratory and under a complete anaerobic condition (in vitro condition). 40 ml of “CaldWell" medium and 1.4g wheat straw were placed in incubator for an hour. The cellulase activity of ostrich microorganisms was compared with other treatments, and then different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi were injected to ostrich microorganism-s media. Due to the results, cattle and goat with 2.13 and 2.08 I.U (international units) respectively showed the highest activity and ostrich with 0.91 (I.U) had the lowest cellulose activity (p < 0.05). Injecting 30% and 50% of anaerobic fungi had no significant incensement in enzyme activity, but with injecting 70% of rumen fungi to ostrich microorganisms culture a significant increase was observed 1.48 I.U. (p < 0.05).

Keywords: Cellulase enzyme, Microorganisms, Ostrich, Ruminants

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
751 Real Time Classification of Political Tendency of Twitter Spanish Users based on Sentiment Analysis

Authors: Marc Solé, Francesc Giné, Magda Valls, Nina Bijedic

Abstract:

What people say on social media has turned into a rich source of information to understand social behavior. Specifically, the growing use of Twitter social media for political communication has arisen high opportunities to know the opinion of large numbers of politically active individuals in real time and predict the global political tendencies of a specific country. It has led to an increasing body of research on this topic. The majority of these studies have been focused on polarized political contexts characterized by only two alternatives. Unlike them, this paper tackles the challenge of forecasting Spanish political trends, characterized by multiple political parties, by means of analyzing the Twitters Users political tendency. According to this, a new strategy, named Tweets Analysis Strategy (TAS), is proposed. This is based on analyzing the users tweets by means of discovering its sentiment (positive, negative or neutral) and classifying them according to the political party they support. From this individual political tendency, the global political prediction for each political party is calculated. In order to do this, two different strategies for analyzing the sentiment analysis are proposed: one is based on Positive and Negative words Matching (PNM) and the second one is based on a Neural Networks Strategy (NNS). The complete TAS strategy has been performed in a Big-Data environment. The experimental results presented in this paper reveal that NNS strategy performs much better than PNM strategy to analyze the tweet sentiment. In addition, this research analyzes the viability of the TAS strategy to obtain the global trend in a political context make up by multiple parties with an error lower than 23%.

Keywords: Political tendency, prediction, sentiment analysis, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
750 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: Accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
749 The Role of Heat Pumps for the Decarbonization of European Regions

Authors: D. M. Mongelli, M. De Carli, L. Carnieletto, F. Busato

Abstract:

This research aims to provide a contribution to the reduction of fossil fuels and the consequent reduction of CO2eq emissions for each European region. Simulations have been carried out to replace fossil fuel fired heating boilers with air-to-water heat pumps, when allowed by favorable environmental conditions (outdoor temperature, water temperature in emission systems, etc.). To estimate the potential coverage of high-temperature heat pumps in European regions, the energy profiles of buildings were considered together with the potential coefficient of performance (COP) of heat pumps operating with flow temperature with variable climatic regulation. The electrification potential for heating buildings was estimated by dividing the 38 European countries examined into 179 territorial units. The yields have been calculated in terms of energy savings and CO2eq reduction.

Keywords: Decarbonization, Space heating, Heat pumps, Energy policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212
748 Alternative Approach in Ground Vehicle Wake Analysis

Authors: L. Sterken, S. Sebben, L. Löfdahl

Abstract:

In this paper an alternative visualisation approach of the wake behind different vehicle body shapes with simplified and fully-detailed underbody has been proposed and analysed. This allows for a more clear distinction among the different wake regions. This visualisation is based on a transformation of the cartesian coordinates of a chosen wake plane to polar coordinates, using as filter velocities lower than the freestream. This transformation produces a polar wake plot that enables the division and quantification of the wake in a number of sections. In this paper, local drag has been used to visualise the drag contribution of the flow by the different sections. Visually, a balanced wake can be observed by the concentric behaviour of the polar plots. Alternatively, integration of the local drag of each degree section as a ratio of the total local drag yields a quantifiable approach of the wake uniformity, where different sections contribute equally to the local drag, with the exception of the wheels.

Keywords: Coordinate transformation, ground vehicle, local drag, wake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
747 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
746 A Study of RSCMAC Enhanced GPS Dynamic Positioning

Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang

Abstract:

The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.

Keywords: Dynamic Error, GPS, Prediction, RSCMAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
745 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
744 Effect of Dietary α-Cellulose Levels on the Growth Parameters of Nile Tilapia Oreochromis niloticus Fingerlings

Authors: Keri Alhadi Ighwela, Aziz Bin Ahmad, A. B. Abol-Munafi

Abstract:

Three purified diets were formulated using fish meal, soya bean, wheat flour, palm oil, minerals and maltose. The carbohydrate in the diets was increased from 5 to 15% by changing the cellulose content to study the effect of dietary carbohydrate level on the growth parameters of Nile tilapia Oreochromis niloticus. The protein and the lipid contents were kept constant in all the diets. The results showed that, weight gain, protein efficiency ratio, net protein utilisation and hepatosomatic index of fish fed the diet containing 15% cellulose were the lowest among all groups. Addition, the fish fed the diet containing 5% cellulose had the best specific growth rate, and food conversion ratio. While, there was no effect of the dietary cellulose levels on condition factor and survival rate. These results indicate that Nile tilapia fingerlings are able to utilize dietary cellulose does not exceed 10% in their feed for optimum growth.

Keywords: Dietary cellulose, growth parameters, Nile Tilapia Oreochromis niloticus, purified diets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4699
743 Removal of Aggregates of Monoclonal Antibodies by Ion Exchange Chromatography

Authors: Ishan Arora, Anurag S. Rathore

Abstract:

The primary objective of this work was to study the effect of resin chemistry, pH and molarity of binding and elution buffer on aggregate removal using Cation Exchange Chromatography and find the optimum conditions which can give efficient aggregate removal with minimum loss of yield. Four different resins were used for carrying out the experiments: Fractogel EMD SO3 -(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs were carried out on the AKTA Avant system. Design of Experiments (DOE) was used for analysis using the JMP software. The dependence of the yield obtained using different resins on the operating conditions was studied. Success has been achieved in obtaining yield greater than 90% using Capto SP ImpRes and Fractogel EMD COO-(M) resins. It has also been found that a change in the operating conditions generally has different effects on the yields obtained using different resins.

Keywords: Aggregates, cation exchange chromatography, design of experiments, monoclonal antibodies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
742 Impacts of Tillage on Biodiversity of Microarthropod Communities in Two Different Crop Systems

Authors: Leila Ramezani, Mohammad Saeid Mossadegh

Abstract:

Different uses of land by humans alter the physico chemical characteristics of the soil and affect the soil microhabitat. The objective of this study was to evaluate the influence of tillage in three different human land uses on microarthropods biodiversity in Khuzestan province, southwest of Iran. Three microhabitats including a permanent grassland with old Date-Palms around and no till system, and two wheat fields, one with conservative agricultural practices and low till system and the other with conventional agricultural practices (deep tillage), were compared for the biodiversity of the two main groups of soil microarthropods (Oribatida and Collembola). Soil samples were collected from the top to a depth of 15 cm bimonthly during a period of two years. Significant differences in the biodiversity index of microarthropods were observed between the different tillage systems (F = 36.748, P =0.000). Indeed, analysis of species diversity showed that the diversity index at the conservative field with low till (2.58 ± 0.01) was higher (p < 0.05) than the conventional tilled field (2.45 ± 0.08) and the diversity of natural grassland was the highest (2.79 ± 0.19, p < 0.05). Indeed, the index of biodiversity and population abundance differed significantly in different seasons (p < 0.00).

Keywords: Biodiversity, collembola, microarthropods, oribatida.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
741 Nigerian Bread Contribute One Half of Recommended Vitamin a Intake in Poor-Urban Lagosian Preschoolers

Authors: Florence Uchendu, Tola Atinmo

Abstract:

Nigerian bread is baked with vitamin A fortified wheat flour. Study aimed at determining its contribution to preschoolers- vitamin A nutriture. A cross-sectional/experimental study was carried out in four poor-urban Local Government Areas (LGAs) of Metropolitan Lagos, Nigeria. A pretested food frequency questionnaire was administered to randomly selected mothers of 1600 preschoolers (24-59 months). Retinyl Palmitate content of fourteen bread samples randomly collected from bakeries in all LGAs was analyzed at 0 and 5 days at 25oC using High Performance Liquid Chromatography. Data analysis was done at p<.05. Mean total intake of vitamin A from bread was 220.40μgRAE (733.94±775.68i.u). Bread contributed 6.5–178.4% of preschoolers RDA (1333i.u/400μgRAE). Mean contribution to vitamin A intake was 55.06±58.18%. Strong statistical significant relationship existed between total vitamin A intake and % RDA which was directly proportional (p<.01). Result indicates that bread made an important contribution towards vitamin A intake in poor-urban Lagosian preschoolers.

Keywords: Bread, dietary intake, Lagos metropolis, preschoolers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145