Search results for: Radial Basis Function Neural Networks
4654 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate
Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand
Abstract:
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48114653 Hybrid Intelligent Intrusion Detection System
Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed
Abstract:
Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21314652 Aircraft Gas Turbine Engines Technical Condition Identification System
Authors: A. M. Pashayev, C. Ardil, D. D. Askerov, R. A. Sadiqov, P. S. Abdullayev
Abstract:
In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.
Keywords: Gas turbine engines, neural networks, fuzzy logic, fuzzy statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19044651 Speaker Identification using Neural Networks
Authors: R.V Pawar, P.P.Kajave, S.N.Mali
Abstract:
The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.Keywords: Average Mean Distance function, Backpropogation, Linear Predictive Coding, MultilayeredPerceptron,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18934650 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.
Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884649 EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks
Authors: Dilip Kumar S.M, Vijaya Kumar B.P.
Abstract:
The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.Keywords: Ad hoc networks, admission control, energy-aware routing, Quality-of-Service, future residual energy, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16474648 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis
Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar
Abstract:
In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26144647 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27634646 Estimation of Broadcast Probability in Wireless Adhoc Networks
Authors: Bharadwaj Kadiyala, Sunitha V
Abstract:
Most routing protocols (DSR, AODV etc.) that have been designed for wireless adhoc networks incorporate the broadcasting operation in their route discovery scheme. Probabilistic broadcasting techniques have been developed to optimize the broadcast operation which is otherwise very expensive in terms of the redundancy and the traffic it generates. In this paper we have explored percolation theory to gain a different perspective on probabilistic broadcasting schemes which have been actively researched in the recent years. This theory has helped us estimate the value of broadcast probability in a wireless adhoc network as a function of the size of the network. We also show that, operating at those optimal values of broadcast probability there is at least 25-30% reduction in packet regeneration during successful broadcasting.Keywords: Crossover length, Percolation, Probabilistic broadcast, Wireless adhoc networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15924645 Exploiting Machine Learning Techniques for the Enhancement of Acceptance Sampling
Authors: Aikaterini Fountoulaki, Nikos Karacapilidis, Manolis Manatakis
Abstract:
This paper proposes an innovative methodology for Acceptance Sampling by Variables, which is a particular category of Statistical Quality Control dealing with the assurance of products quality. Our contribution lies in the exploitation of machine learning techniques to address the complexity and remedy the drawbacks of existing approaches. More specifically, the proposed methodology exploits Artificial Neural Networks (ANNs) to aid decision making about the acceptance or rejection of an inspected sample. For any type of inspection, ANNs are trained by data from corresponding tables of a standard-s sampling plan schemes. Once trained, ANNs can give closed-form solutions for any acceptance quality level and sample size, thus leading to an automation of the reading of the sampling plan tables, without any need of compromise with the values of the specific standard chosen each time. The proposed methodology provides enough flexibility to quality control engineers during the inspection of their samples, allowing the consideration of specific needs, while it also reduces the time and the cost required for these inspections. Its applicability and advantages are demonstrated through two numerical examples.Keywords: Acceptance Sampling, Neural Networks, Statistical Quality Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16954644 Detection of Actuator Faults for an Attitude Control System using Neural Network
Authors: S. Montenegro, W. Hu
Abstract:
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19924643 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.
Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9144642 A New Heuristic Approach for Optimal Network Reconfiguration in Distribution Systems
Authors: R. Srinivasa Rao, S. V. L. Narasimham
Abstract:
This paper presents a novel approach for optimal reconfiguration of radial distribution systems. Optimal reconfiguration involves the selection of the best set of branches to be opened, one each from each loop, such that the resulting radial distribution system gets the desired performance. In this paper an algorithm is proposed based on simple heuristic rules and identified an effective switch status configuration of distribution system for the minimum loss reduction. This proposed algorithm consists of two parts; one is to determine the best switching combinations in all loops with minimum computational effort and the other is simple optimum power loss calculation of the best switching combination found in part one by load flows. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 33-bus system. The results show that the performance of the proposed method is better than that of the other methods.Keywords: Distribution system, network reconfiguration, powerloss reduction, radial network, heuristic technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27754641 On Minimum Cycle Bases of the Wreath Product of Wheels with Stars
Authors: M. M. M. Jaradat, M. K. Al-Qeyyam
Abstract:
The length of a cycle basis of a graph is the sum of the lengths of its elements. A minimum cycle basis is a cycle basis with minimum length. In this work, a construction of a minimum cycle basis for the wreath product of wheels with stars is presented. Moreover, the length of minimum cycle basis and the length of its longest cycle are calculated.
Keywords: Cycle space, minimum cycle basis, wreath product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11024640 Neural Networks-Based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yi Chao Ma, Cheng Siong Chin, Wai Lok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and threedimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who are the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system, which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: Hard disk drive noise, jury test, neural network model, psychoacoustic annoyance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15334639 A Grid-based Neural Network Framework for Multimodal Biometrics
Authors: Sitalakshmi Venkataraman
Abstract:
Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19174638 Diffusion Analysis of a Scalable Feistel Network
Authors: Subariah Ibrahim, Mohd Aizaini Maarof
Abstract:
A generalization of the concepts of Feistel Networks (FN), known as Extended Feistel Network (EFN) is examined. EFN splits the input blocks into n > 2 sub-blocks. Like conventional FN, EFN consists of a series of rounds whereby at least one sub-block is subjected to an F function. The function plays a key role in the diffusion process due to its completeness property. It is also important to note that in EFN the F-function is the most computationally expensive operation in a round. The aim of this paper is to determine a suitable type of EFN for a scalable cipher. This is done by analyzing the threshold number of rounds for different types of EFN to achieve the completeness property as well as the number of F-function required in the network. The work focuses on EFN-Type I, Type II and Type III only. In the analysis it is found that EFN-Type II and Type III diffuses at the same rate and both are faster than Type-I EFN. Since EFN-Type-II uses less F functions as compared to EFN-Type III, therefore Type II is the most suitable EFN for use in a scalable cipher.
Keywords: Cryptography, Extended Feistel Network, Diffusion Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17144637 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis
Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache
Abstract:
This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.
Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394636 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.
Keywords: Neural network, conformal prediction, cancer classification, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8394635 An Effective Approach for Distribution System Power Flow Solution
Authors: A. Alsaadi, B. Gholami
Abstract:
An effective approach for unbalanced three-phase distribution power flow solutions is proposed in this paper. The special topological characteristics of distribution networks have been fully utilized to make the direct solution possible. Two matrices–the bus-injection to branch-current matrix and the branch-current to busvoltage matrix– and a simple matrix multiplication are used to obtain power flow solutions. Due to the distinctive solution techniques of the proposed method, the time-consuming LU decomposition and forward/backward substitution of the Jacobian matrix or admittance matrix required in the traditional power flow methods are no longer necessary. Therefore, the proposed method is robust and time-efficient. Test results demonstrate the validity of the proposed method. The proposed method shows great potential to be used in distribution automation applications.Keywords: Distribution power flow, distribution automation system, radial network, unbalanced networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42394634 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load
Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir
Abstract:
Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.
Keywords: Airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7144633 Computational Fluid Dynamics Expert System using Artificial Neural Networks
Authors: Gonzalo Rubio, Eusebio Valero, Sven Lanzan
Abstract:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.Keywords: Artificial Neural Network, Computational Fluid Dynamics, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29574632 Termination of the Brachial Artery in the Arm and Its Clinical Significance
Authors: Ramya Rathan, Miral N. F. Salama
Abstract:
The variations in the arteries have been drawing attention of anatomists for a long time because of their clinical significance. The brachial artery is the principal artery of the arm which is the continuation of the axillary artery from the lower border of the Teres Major. It terminates into the radial and ulnar arteries below the elbow joint at the neck radius. The present study aims at exploring the clinical significance of the high termination of the brachial artery. During the routine cadaveric dissection of the arm, for the undergraduate students of medicine at our university, we observed a high bifurcation of the radial and the ulnar artery at the midshaft of the humerus. The median nerve was seen passing between these two junctions. Further, the course and the relations of this artery were studied. The accurate knowledge regarding these kinds of variation in the blood vessels is mandatory for planning of designing. General physicians, surgeons and radiologists should keep in mind the variations in the branching pattern of the arteries in their daily medical, diagnostic and therapeutic procedures to avoid complications in diagnostic and surgical procedures.
Keywords: Brachial artery, high termination, radial artery, ulnar artery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9194631 Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets
Authors: Rehana Naz, D. P. Mason, Fazal Mahomed
Abstract:
A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.
Keywords: Axisymmetric jet, liquid jet, free jet, wall jet, conservation laws, conserved quantity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14634630 Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach
Authors: R. Ebrahimpour, M. Abbasnezhad Arabi, H. Babamiri Moghaddam
Abstract:
Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.Keywords: Error correcting output code, combining classifiers, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14014629 Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm
Authors: R. Srinivasa Rao
Abstract:
This paper presents a new and efficient approach for capacitor placement in radial distribution systems that determine the optimal locations and size of capacitor with an objective of improving the voltage profile and reduction of power loss. The solution methodology has two parts: in part one the loss sensitivity factors are used to select the candidate locations for the capacitor placement and in part two a new algorithm that employs Plant growth Simulation Algorithm (PGSA) is used to estimate the optimal size of capacitors at the optimal buses determined in part one. The main advantage of the proposed method is that it does not require any external control parameters. The other advantage is that it handles the objective function and the constraints separately, avoiding the trouble to determine the barrier factors. The proposed method is applied to 9 and 34 bus radial distribution systems. The solutions obtained by the proposed method are compared with other methods. The proposed method has outperformed the other methods in terms of the quality of solution.Keywords: Distribution systems, Capacitor allocation, Loss reduction, Fuzzy, PGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22794628 Development of Gas Chromatography Model: Propylene Concentration Using Neural Network
Authors: Areej Babiker Idris Babiker, Rosdiazli Ibrahim
Abstract:
Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm.Keywords: Analyzer, Levenberg-Marquardt, Gas chromatography, Neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17674627 A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks
Authors: Minsoo Lee, Julee Choi, Sookyung Song
Abstract:
The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.Keywords: Aggregation, Incremental View Maintenance, Materialized view, Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15404626 Extended Least Squares LS–SVM
Authors: József Valyon, Gábor Horváth
Abstract:
Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20094625 Communication in a Heterogeneous Ad Hoc Network
Authors: C. Benjbara, A. Habbani
Abstract:
Wireless networks are getting more and more used in every new technology or feature, especially those without infrastructure (Ad hoc mode) which provide a low cost alternative to the infrastructure mode wireless networks and a great flexibility for application domains such as environmental monitoring, smart cities, precision agriculture, and so on. These application domains present a common characteristic which is the need of coexistence and intercommunication between modules belonging to different types of ad hoc networks like wireless sensor networks, mesh networks, mobile ad hoc networks, vehicular ad hoc networks, etc. This vision to bring to life such heterogeneous networks will make humanity duties easier but its development path is full of challenges. One of these challenges is the communication complexity between its components due to the lack of common or compatible protocols standard. This article proposes a new patented routing protocol based on the OLSR standard in order to resolve the heterogeneous ad hoc networks communication issue. This new protocol is applied on a specific network architecture composed of MANET, VANET, and FANET.Keywords: Ad hoc, heterogeneous, ID-Node, OLSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749