Search results for: Distorted patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 809

Search results for: Distorted patterns

209 Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation

Authors: S. Logeswari, K. Premalatha

Abstract:

Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.

Keywords: MeSH Ontology, Concept Indexing, Annotation, semantic relations, Fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
208 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: Multi-agent system, safety analysis, safety model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
207 Optimizing Spatial Trend Detection By Artificial Immune Systems

Authors: M. Derakhshanfar, B. Minaei-Bidgoli

Abstract:

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
206 Comparison of Stochastic Point Process Models of Rainfall in Singapore

Authors: Y. Lu, X. S. Qin

Abstract:

Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models.

Keywords: Rainfall disaggregation, statistical properties, poisson processed, Bartlett-Lewis model, Neyman-Scott model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
205 Modelling and Enhancing Engineering Drawing and Design Table Design by Analyzing Stress and Advanced Deformation Analysis Using Finite Element Method

Authors: Nitesh Pandey, Manish Kumar, Amit Kumar Srivastava, Pankaj Gupta

Abstract:

The research presents an extensive analysis of the Engineering Drawing and Design (EDD) table's design and development, accentuating its convertible utility and ergonomic design principles. Through the amalgamation of advanced design methodologies with simulation tools, this paper explores and compares the structural integrity of the EDD table, considering both linear and nonlinear stress behaviors. The study evaluates stress distribution and deformation patterns using the Finite Element Method (FEM) in Autodesk Fusion 360 CAD/CAM software. These analyses are critical to maximizing the durability and performance of the table. Stress situations are modeled using mathematical equations, which provide an accurate depiction of real-world operational conditions. The research highlights the EDD table as an innovative solution tailored to the diverse needs of modern workspaces, providing a balance of practical functionality and ergonomic design while demonstrating cost-effectiveness and time efficiency in the design process.

Keywords: Parametric modelling, Finite element method, FEM, Autodesk Fusion 360, stress analysis, CAD/CAM, computer aided design, computer-aided manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30
204 Implementation of Neural Network Based Electricity Load Forecasting

Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw

Abstract:

This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.

Keywords: Neural network, Load forecast, Time series, wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
203 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
202 Semantically Enriched Web Usage Mining for Personalization

Authors: Suresh Shirgave, Prakash Kulkarni, José Borges

Abstract:

The continuous growth in the size of the World Wide Web has resulted in intricate Web sites, demanding enhanced user skills and more sophisticated tools to help the Web user to find the desired information. In order to make Web more user friendly, it is necessary to provide personalized services and recommendations to the Web user. For discovering interesting and frequent navigation patterns from Web server logs many Web usage mining techniques have been applied. The recommendation accuracy of usage based techniques can be improved by integrating Web site content and site structure in the personalization process.

Herein, we propose semantically enriched Web Usage Mining method for Personalization (SWUMP), an extension to solely usage based technique. This approach is a combination of the fields of Web Usage Mining and Semantic Web. In the proposed method, we envisage enriching the undirected graph derived from usage data with rich semantic information extracted from the Web pages and the Web site structure. The experimental results show that the SWUMP generates accurate recommendations and is able to achieve 10-20% better accuracy than the solely usage based model. The SWUMP addresses the new item problem inherent to solely usage based techniques.

Keywords: Prediction, Recommendation, Semantic Web Usage Mining, Web Usage Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022
201 Improving Packet Latency of Video Sensor Networks

Authors: Arijit Ghosh, Tony Givargis

Abstract:

Video sensor networks operate on stringent requirements of latency. Packets have a deadline within which they have to be delivered. Violation of the deadline causes a packet to be treated as lost and the loss of packets ultimately affects the quality of the application. Network latency is typically a function of many interacting components. In this paper, we propose ways of reducing the forwarding latency of a packet at intermediate nodes. The forwarding latency is caused by a combination of processing delay and queueing delay. The former is incurred in order to determine the next hop in dynamic routing. We show that unless link failures in a very specific and unlikely pattern, a vast majority of these lookups are redundant. To counter this we propose source routing as the routing strategy. However, source routing suffers from issues related to scalability and being impervious to network dynamics. We propose solutions to counter these and show that source routing is definitely a viable option in practical sized video networks. We also propose a fast and fair packet scheduling algorithm that reduces queueing delay at the nodes. We support our claims through extensive simulation on realistic topologies with practical traffic loads and failure patterns.

Keywords: Sensor networks, Packet latency, Network design, Networkperformance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
200 Protocol and Method for Preventing Attacks from the Web

Authors: Ryuya Uda

Abstract:

Nowadays, computer worms, viruses and Trojan horse become popular, and they are collectively called malware. Those malware just spoiled computers by deleting or rewriting important files a decade ago. However, recent malware seems to be born to earn money. Some of malware work for collecting personal information so that malicious people can find secret information such as password for online banking, evidence for a scandal or contact address which relates with the target. Moreover, relation between money and malware becomes more complex. Many kinds of malware bear bots to get springboards. Meanwhile, for ordinary internet users, countermeasures against malware come up against a blank wall. Pattern matching becomes too much waste of computer resources, since matching tools have to deal with a lot of patterns derived from subspecies. Virus making tools can automatically bear subspecies of malware. Moreover, metamorphic and polymorphic malware are no longer special. Recently there appears malware checking sites that check contents in place of users' PC. However, there appears a new type of malicious sites that avoids check by malware checking sites. In this paper, existing protocols and methods related with the web are reconsidered in terms of protection from current attacks, and new protocol and method are indicated for the purpose of security of the web.

Keywords: Information Security, Malware, Network Security, World Wide Web

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
199 Thermodynamic Analysis of Ventilated Façades under Operating Conditions in Southern Spain

Authors: Carlos A. D. Torres, Antonio D. Delgado

Abstract:

In this work we study the thermodynamic behavior of some ventilated facades under summer operating conditions in Southern Spain. Under these climatic conditions, indoor comfort implies a high energetic demand due to high temperatures that usually are reached in this season in the considered geographical area.

The aim of this work is to determine if during summer operating conditions in Southern Spain, ventilated façades provide some energy saving compared to the non-ventilated façades and to deduce their behavior patterns in terms of energy efficiency.

The modelization of the air flow in the channel has been performed by using Navier-Stokes equations for thermodynamic flows. Numerical simulations have been carried out with a 2D Finite Element approach.

This way, we analyze the behavior of ventilated façades under different weather conditions as variable wind, variable temperature and different levels of solar irradiation.

CFD computations show the combined effect of the shading of the external wall and the ventilation by the natural convection into the air gap achieve a reduction of the heat load during the summer period. This reduction has been evaluated by comparing the thermodynamic performances of two ventilated and two unventilated façades with the same geometry and thermophysical characteristics.

Keywords: Passive cooling, ventilated façades, energy-efficient building, CFD, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4948
198 Computational Study of Blood Flow Analysis for Coronary Artery Disease

Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey

Abstract:

The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.

Keywords: Computational fluid dynamics, hemodynamics, velocity, strain rate, wall pressure, wall shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
197 Enhancing the Performance of H.264/AVC in Adaptive Group of Pictures Mode Using Octagon and Square Search Pattern

Authors: S. Sowmyayani, P. Arockia Jansi Rani

Abstract:

This paper integrates Octagon and Square Search pattern (OCTSS) motion estimation algorithm into H.264/AVC (Advanced Video Coding) video codec in Adaptive Group of Pictures (AGOP) mode. AGOP structure is computed based on scene change in the video sequence. Octagon and square search pattern block-based motion estimation method is implemented in inter-prediction process of H.264/AVC. Both these methods reduce bit rate and computational complexity while maintaining the quality of the video sequence respectively. Experiments are conducted for different types of video sequence. The results substantially proved that the bit rate, computation time and PSNR gain achieved by the proposed method is better than the existing H.264/AVC with fixed GOP and AGOP. With a marginal gain in quality of 0.28dB and average gain in bitrate of 132.87kbps, the proposed method reduces the average computation time by 27.31 minutes when compared to the existing state-of-art H.264/AVC video codec.

Keywords: Block Distortion Measure, Block Matching Algorithms, H.264/AVC, Motion estimation, Search patterns, Shot cut detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
196 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The Composite Shear Walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: Shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
195 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
194 Spatial and Temporal Variability of Fog Over the Indo-Gangetic Plains, India

Authors: Sanjay Kumar Srivastava, Anu Rani Sharma, Kamna Sachdeva

Abstract:

The aim of the paper is to analyze the characteristics of winter fog in terms of its trend and spatial-temporal variability over Indo-Gangetic plains. The study reveals that during last four and half decades (1971-2015), an alarming increasing trend in fog frequency has been observed during the winter months of December and January over the study area. The frequency of fog has increased by 118.4% during the peak winter months of December and January. It has also been observed that on an average central part of IGP has 66.29% fog days followed by west IGP with 41.94% fog days. Further, Empirical Orthogonal Function (EOF) decomposition and Mann-Kendall variation analysis are used to analyze the spatial and temporal patterns of winter fog. The findings have significant implications for the further research of fog over IGP and formulate robust strategies to adapt the fog variability and mitigate its effects. The decision by Delhi Government to implement odd-even scheme to restrict the use of private vehicles in order to reduce pollution and improve quality of air may result in increasing the alarming increasing trend of fog over Delhi and its surrounding areas regions of IGP.

Keywords: Fog, climatology, spatial variability, temporal variability, empirical orthogonal function, visibility, Mann-Kendall test, variation point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
193 Vortex Shedding at the End of Parallel-plate Thermoacoustic Stack in the Oscillatory Flow Conditions

Authors: Lei Shi, Zhibin Yu, Artur J. Jaworski, Abdulrahman S. Abduljalil

Abstract:

This paper investigates vortex shedding processes occurring at the end of a stack of parallel plates, due to an oscillating flow induced by an acoustic standing wave within an acoustic resonator. Here, Particle Image Velocimetry (PIV) is used to quantify the vortex shedding processes within an acoustic cycle phase-by-phase, in particular during the “ejection" of the fluid out of the stack. Standard hot-wire anemometry measurement is also applied to detect the velocity fluctuations near the end of the stack. Combination of these two measurement techniques allowed a detailed analysis of the vortex shedding phenomena. The results obtained show that, as the Reynolds number varies (by varying the plate thickness and drive ratio), different flow patterns of vortex shedding are observed by the PIV measurement. On the other hand, the time-dependent hot-wire measurements allow obtaining detailed frequency spectra of the velocity signal, used for calculating characteristic Strouhal numbers. The impact of the plate thickness and the Reynolds number on the vortex shedding pattern has been discussed. Furthermore, a detailed map of the relationship between the Strouhal number and Reynolds number has been obtained and discussed.

Keywords: Oscillatory flow, Parallel-plate thermoacoustic stack, Strouhal numbers, Vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
192 The Interplay of Locus of Control, Academic Achievement, and Biological Variables among Iranian Online EFL Learners

Authors: Azizeh Chalak, Niloufar Nasri

Abstract:

Students' academic achievement, along with the effects of different variables, has been a serious concern of educators since long ago. This study was an attempt to investigate the interplay of Locus of Control (LOC), academic achievement and biological variables among Iranian online EFL Learners. The participants of the study included 100 students of different age groups and genders studying English online at Iran Language Institute (ILI), Isfahan, Iran. The instrument used was Trice Academic LOC questionnaire which identifies orientations of internality or externality. The participants' Grade Point Averages (GPAs) were used as the measure of their academic achievement. A series of independent samples ttests were performed on the data. The results of the study showed that (a) there were no significant differences between male and female participants in LOC orientation, (b) there was no relationship between LOC and academic achievement among internal males and females, (c) external females were better achievers than external males, (d) and the age had no significant relationship with LOC and academic achievement. It can be concluded that the social, cultural patterns of genders have changed. This study might help sociologists and psychologists as well as applied linguists in that they reflect the recent social changes and their effects on the LOC and their consequent implications in teaching languages.

Keywords: Academic achievement, biological variables, Iranian online EFL learners, locus of control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
191 An Approach to Consumption of Exhaustible Resources Based on Islamic Justice and Hartwick Criteria

Authors: Hamed Najafi, Ghasem Nikjou

Abstract:

Nowadays, there is an increasing attention to the resources scarcity issues. Because of failure in present patterns in the field of the allocation of exhaustible resources between generations and the challenges related to economic justice supply, it is supposed, to present a pattern from the Islamic perspective in this essay. By using content analysis of religious texts, we conclude that governments should remove the gap which is exists between the per capita income of the poor and their minimum consumption (necessary consumption). In order to preserve the exhaustible resources for poor people) not for all), between all generations, government should invest exhaustible resources on endless resources according to Hartwick’s criteria and should spend these benefits for poor people. But, if benefits did not cover the gap between minimum consumption and per capita income of poor levels in one generation, in this case, the government is responsible for covering this gap through the direct consumption of exhaustible resources. For an exact answer to this question, ‘how much of exhaustible resources should expense to maintain justice between generations?’ The theoretical and mathematical modeling has been used and proper function has been provided. The consumption pattern is presented for economic policy makers in Muslim countries, and non-Muslim even, it can be useful.

Keywords: Exhaustible resources, Islamic justice, intergenerational justice, distribution of resources, Hartwick Criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673
190 Creativity in the Use of Sinhala and English in Advertisements in Sri Lanka: A Morphological Analysis

Authors: Chamindi Dilkushi Senaratne

Abstract:

Sri Lanka has lived with the English language for more than 200 years. Although officially considered a link language, the phenomenal usage of English by the Sinhala-English bilingual has given rise to a mixed code with identifiable structural characteristics. The extensive use of the mixed language by the average Sri Lankan bilingual has resulted in it being used as a medium of communication by creative writers of bilingual advertisements in Sri Lanka. This study analyses the way in which English is used in bilingual advertisements in both print and electronic media in Sri Lanka. The theoretical framework for the study is based on Kachru’s analysis of the use of English by the bilingual, Muysken’s typology on code mixing theories in colonial settings and Myers-Scotton’s theory on the Matrix Language Framework Model. The study will look at a selection of Sinhala-English advertisements published in newspapers from 2015 to 2016. Only advertisements using both Sinhala and English are used for the analysis. To substantiate data collected from the newspapers, the study will select bilingual advertisements from television advertisements. The objective of the study is to analyze the mixed patterns used for creative purposes by advertisers. The results of the study will reveal the creativity used by the Sinhala –English bilingual and the morphological processes used by the creators of Sinhala-English bilingual advertisements to attract the masses.

Keywords: Bilingual, code mixing, mixed code, morphology, processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
189 Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods

Authors: Eu Tteum Ha, Kwang Ryel Ryu

Abstract:

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.

Keywords: Ensemble learning, activity recognition, smartphone accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
188 An Efficient Approach to Mining Frequent Itemsets on Data Streams

Authors: Sara Ansari, Mohammad Hadi Sadreddini

Abstract:

The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.

Keywords: Data stream, frequent itemset, stream mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
187 Detection of Cyberattacks on the Metaverse Based on First-Order Logic

Authors: Sulaiman Al Amro

Abstract:

There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.

Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66
186 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal

Abstract:

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4247
185 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
184 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate

Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh

Abstract:

Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.

Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
183 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation

Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More

Abstract:

A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.

Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
182 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: Undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
181 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
180 Behavior of Confined Columns under Different Techniques

Authors: Mostafa Osman, Ata El-Kareim Shoeib Soliman

Abstract:

Since columns are the most important elements of the structures, failure of one column in a critical location can cause a progressive collapse. In this respect, the repair and strengthening of columns is a very important subject to reduce the building failure and to keep the columns capacity. Twenty columns with different parameters is tested and analysis. Eleven typical confined reinforced concrete (RC) columns with different types of techniques are assessment. And also, four confined concrete columns with plastic tube (PVC) are tested with and with four paralleling tested of unconfined plain concrete. The techniques of confined RC columns are mortar strengthening, Steel rings strengthening, FRP strengthening. Moreover, the technique of confined plain concrete (PC) column is used PVC tubes. The columns are tested under uniaxial compressive loads studied the effect of confinement on the structural behavior of circular RC columns. Test results for each column are presented in the form of crack patterns, stress-strain curves. Test results show that confining of the RC columns using different techniques of strengthening results significant improvement of the general behavior of the columns and can used in construction. And also, tested confined PC columns with PVC tubes results shown that the confined PC with PVC tubes can be used in economical building. The theoretical model for predicted column capacity is founded with experimental factor depends on the confined techniques used and the strain reduction.

Keywords: Confined reinforced concrete column, CFRP, GFRP, Mortar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638