Search results for: remote detection chemical warfare agents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3206

Search results for: remote detection chemical warfare agents

2636 A Hybrid Approach to Fault Detection and Diagnosis in a Diesel Fuel Hydrotreatment Process

Authors: Salvatore L., Pires B., Campos M. C. M., De Souza Jr M. B.

Abstract:

It is estimated that the total cost of abnormal conditions to US process industries is around $20 billion dollars in annual losses. The hydrotreatment (HDT) of diesel fuel in petroleum refineries is a conversion process that leads to high profitable economical returns. However, this is a difficult process to control because it is operated continuously, with high hydrogen pressures and it is also subject to disturbances in feed properties and catalyst performance. So, the automatic detection of fault and diagnosis plays an important role in this context. In this work, a hybrid approach based on neural networks together with a pos-processing classification algorithm is used to detect faults in a simulated HDT unit. Nine classes (8 faults and the normal operation) were correctly classified using the proposed approach in a maximum time of 5 minutes, based on on-line data process measurements.

Keywords: Fault detection, hydrotreatment, hybrid systems, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
2635 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency subband of the DWT of the suspicious image thereby leaving valuable information in the other three subbands, the proposed algorithm simultaneously extracts features from all the four subbands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates. 

Keywords: Affine Transformation, Discrete Wavelet Transform, Radix Sort, SATS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
2634 Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions

Authors: Mohsen Pirdashti, Arezou Ghadi, Mehrdad Mohammadi, Gholamreza Shojatalab

Abstract:

Chemical industry project management involves complex decision making situations that require discerning abilities and methods to make sound decisions. Project managers are faced with decision environments and problems in projects that are complex. In this work, case study is Research and Development (R&D) project selection. R&D is an ongoing process for forward thinking technology-based chemical industries. R&D project selection is an important task for organizations with R&D project management. It is a multi-criteria problem which includes both tangible and intangible factors. The ability to make sound decisions is very important to success of R&D projects. Multiple-criteria decision making (MCDM) approaches are major parts of decision theory and analysis. This paper presents all of MCDM approaches for use in R&D project selection. It is hoped that this work will provide a ready reference on MCDM and this will encourage the application of the MCDM by chemical engineering management.

Keywords: Chemical Engineering, R&D Project, MCDM, Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4088
2633 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: Enhanced ideal gas molecular movement, ideal gas molecular movement, model updating method, probability-based damage detection, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
2632 Automated Optic Disc Detection in Retinal Images of Patients with Diabetic Retinopathy and Risk of Macular Edema

Authors: Arturo Aquino, Manuel Emilio Gegundez, Diego Marin

Abstract:

In this paper, a new automated methodology to detect the optic disc (OD) automatically in retinal images from patients with risk of being affected by Diabetic Retinopathy (DR) and Macular Edema (ME) is presented. The detection procedure comprises two independent methodologies. On one hand, a location methodology obtains a pixel that belongs to the OD using image contrast analysis and structure filtering techniques and, on the other hand, a boundary segmentation methodology estimates a circular approximation of the OD boundary by applying mathematical morphology, edge detection techniques and the Circular Hough Transform. The methodologies were tested on a set of 1200 images composed of 229 retinographies from patients affected by DR with risk of ME, 431 with DR and no risk of ME and 540 images of healthy retinas. The location methodology obtained 98.83% success rate, whereas the OD boundary segmentation methodology obtained good circular OD boundary approximation in 94.58% of cases. The average computational time measured over the total set was 1.67 seconds for OD location and 5.78 seconds for OD boundary segmentation.

Keywords: Diabetic retinopathy, macular edema, optic disc, automated detection, automated segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
2631 Identify Features and Parameters to Devise an Accurate Intrusion Detection System Using Artificial Neural Network

Authors: Saman M. Abdulla, Najla B. Al-Dabagh, Omar Zakaria

Abstract:

The aim of this article is to explain how features of attacks could be extracted from the packets. It also explains how vectors could be built and then applied to the input of any analysis stage. For analyzing, the work deploys the Feedforward-Back propagation neural network to act as misuse intrusion detection system. It uses ten types if attacks as example for training and testing the neural network. It explains how the packets are analyzed to extract features. The work shows how selecting the right features, building correct vectors and how correct identification of the training methods with nodes- number in hidden layer of any neural network affecting the accuracy of system. In addition, the work shows how to get values of optimal weights and use them to initialize the Artificial Neural Network.

Keywords: Artificial Neural Network, Attack Features, MisuseIntrusion Detection System, Training Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
2630 Adaptive Group of Pictures Structure Based On the Positions of Video Cuts

Authors: Lenka Krulikovská, Jaroslav Polec, Michal Martinovič

Abstract:

In this paper we propose a method which improves the efficiency of video coding. Our method combines an adaptive GOP (group of pictures) structure and the shot cut detection. We have analyzed different approaches for shot cut detection with aim to choose the most appropriate one. The next step is to situate N frames to the positions of detected cuts during the process of video encoding. Finally the efficiency of the proposed method is confirmed by simulations and the obtained results are compared with fixed GOP structures of sizes 4, 8, 12, 16, 32, 64, 128 and GOP structure with length of entire video. Proposed method achieved the gain in bit rate from 0.37% to 50.59%, while providing PSNR (Peak Signal-to-Noise Ratio) gain from 1.33% to 0.26% in comparison to simulated fixed GOP structures.

Keywords: Adaptive GOP structure, video coding, video content, shot cut detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
2629 The Implementation of Spatio-Temporal Graph to Represent Situations in the Virtual World

Authors: Gung-Hun Jung, Jong-Hee Park

Abstract:

In this paper, we develop a Spatio-Temporal graph as of a key component of our knowledge representation Scheme. We design an integrated representation Scheme to depict not only present and past but future in parallel with the spaces in an effective and intuitive manner. The resulting multi-dimensional comprehensive knowledge structure accommodates multi-layered virtual world developing in the time to maximize the diversity of situations in the historical context. This knowledge representation Scheme is to be used as the basis for simulation of situations composing the virtual world and for implementation of virtual agents' knowledge used to judge and evaluate the situations in the virtual world. To provide natural contexts for situated learning or simulation games, the virtual stage set by this Spatio-Temporal graph is to be populated by agents and other objects interrelated and changing which are abstracted in the ontology.

Keywords: Ontology, Virtual Reality, Spatio-Temporal graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
2628 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
2627 An Overview of Technology Availability to Support Remote Decentralized Clinical Trials

Authors: S. Huber, B. Schnalzer, B. Alcalde, S. Hanke, L. Mpaltadoros, T. G. Stavropoulos, S. Nikolopoulos, I. Kompatsiaris, L. Pérez-Breva, V. Rodrigo-Casares, J. Fons-Martínez, J. de Bruin

Abstract:

Developing new medicine and health solutions and improving patient health currently rely on the successful execution of clinical trials, which generate relevant safety and efficacy data. For their success, recruitment and retention of participants are some of the most challenging aspects of protocol adherence. Main barriers include: i) lack of awareness of clinical trials; ii) long distance from the clinical site; iii) the burden on participants, including the duration and number of clinical visits, and iv) high dropout rate. Most of these aspects could be addressed with a new paradigm, namely the Remote Decentralized Clinical Trials (RDCTs). Furthermore, the COVID-19 pandemic has highlighted additional advantages and challenges for RDCTs in practice, allowing participants to join trials from home and not depending on site visits, etc. Nevertheless, RDCTs should follow the process and the quality assurance of conventional clinical trials, which involve several processes. For each part of the trial, the Building Blocks, existing software and technologies were assessed through a systematic search. The technology needed to perform RDCTs is widely available and validated but is yet segmented and developed in silos, as different software solutions address different parts of the trial and at various levels. The current paper is analyzing the availability of technology to perform RDCTs, identifying gaps and providing an overview of Basic Building Blocks and functionalities that need to be covered to support the described processes.

Keywords: architectures and frameworks for health informatics systems, clinical trials, information and communications technology, remote decentralized clinical trials, technology availability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
2626 Optic Disc Detection by Earth Mover's Distance Template Matching

Authors: Fernando C. Monteiro, Vasco Cadavez

Abstract:

This paper presents a method for the detection of OD in the retina which takes advantage of the powerful preprocessing techniques such as the contrast enhancement, Gabor wavelet transform for vessel segmentation, mathematical morphology and Earth Mover-s distance (EMD) as the matching process. The OD detection algorithm is based on matching the expected directional pattern of the retinal blood vessels. Vessel segmentation method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel-s feature vector. Feature vectors are composed of the pixel-s intensity and 2D Gabor wavelet transform responses taken at multiple scales. A simple matched filter is proposed to roughly match the direction of the vessels at the OD vicinity using the EMD. The minimum distance provides an estimate of the OD center coordinates. The method-s performance is evaluated on publicly available DRIVE and STARE databases. On the DRIVE database the OD center was detected correctly in all of the 40 images (100%) and on the STARE database the OD was detected correctly in 76 out of the 81 images, even in rather difficult pathological situations.

Keywords: Diabetic retinopathy, Earth Mover's distance, Gabor wavelets, optic disc detection, retinal images

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
2625 Intelligent Agent Communication by Using DAML to Build Agent Community Ontology

Authors: Cheng-Hsiung Hung, Hong-Jie Dai, Jason Jen-Yen Chen

Abstract:

This paper presents a new approach for intelligent agent communication based on ontology for agent community. DARPA agent markup language (DAML) is used to build the community ontology. This paper extends the agent management specification by the foundation for intelligent physical agents (FIPA) to develop an agent role called community facilitator (CF) that manages community directory and community ontology. CF helps build agent community. Precise description of agent service in this community can thus be achieved. This facilitates agent communication. Furthermore, through ontology update, agents with different ontology are capable of communicating with each other. An example of advanced traveler information system is included to illustrate practicality of this approach.

Keywords: Intelligent agent communication, DARPA agent markup language (DAML), Community ontology, Advanced Traveler Information System (ATIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
2624 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
2623 Mouse Pointer Tracking with Eyes

Authors: H. Mhamdi, N. Hamrouni, A. Temimi, M. Bouhlel

Abstract:

In this article, we expose our research work in Human-machine Interaction. The research consists in manipulating the workspace by eyes. We present some of our results, in particular the detection of eyes and the mouse actions recognition. Indeed, the handicaped user becomes able to interact with the machine in a more intuitive way in diverse applications and contexts. To test our application we have chooses to work in real time on videos captured by a camera placed in front of the user.

Keywords: Computer vision, Face and Eyes Detection, Mouse pointer recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
2622 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection

Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu

Abstract:

Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.

Keywords: detection, intersection, mixed traffic, moving objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
2621 Parallezation Protein Sequence Similarity Algorithms using Remote Method Interface

Authors: Mubarak Saif Mohsen, Zurinahni Zainol, Rosalina Abdul Salam, Wahidah Husain

Abstract:

One of the major problems in genomic field is to perform sequence comparison on DNA and protein sequences. Executing sequence comparison on the DNA and protein data is a computationally intensive task. Sequence comparison is the basic step for all algorithms in protein sequences similarity. Parallel computing is an attractive solution to provide the computational power needed to speedup the lengthy process of the sequence comparison. Our main research is to enhance the protein sequence algorithm using dynamic programming method. In our approach, we parallelize the dynamic programming algorithm using multithreaded program to perform the sequence comparison and also developed a distributed protein database among many PCs using Remote Method Interface (RMI). As a result, we showed how different sizes of protein sequences data and computation of scoring matrix of these protein sequence on different number of processors affected the processing time and speed, as oppose to sequential processing.

Keywords: Protein sequence algorithm, dynamic programming algorithm, multithread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2620 Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil

Authors: Ahmed O. Apampa, Yinusa A. Jimoh

Abstract:

The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.

Keywords: Cation exchange capacity, corn cob ash, lateritic soil, soil stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
2619 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials - Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the  reinforcement bars of reinforced concrete members using PZTs is  presented. The damage can be the result of excessive elongation of  the steel bar due to steel yielding or due to local steel corrosion. In  both cases the damage is simulated by considering reduced diameter  of the rebar along the damaged part of its length. An integration  approach based on both electromechanical admittance methodology  and guided wave propagation technique is used to evaluate the  artificial damage on the examined longitudinal steel bar. Two  actuator PZTs and a sensor PZT are considered to be bonded on the  examined steel bar. The admittance of the Sensor PZT is calculated  using COMSOL 3.4a. Fast Furrier Transformation for a better  evaluation of the results is employed. An effort for the quantification  of the damage detection using the root mean square deviation  (RMSD) between the healthy condition and damage state of the  sensor PZT is attempted. The numerical value of the RSMD yields a  level for the difference between the healthy and the damaged  admittance computation indicating this way the presence of damage  in the structure. Experimental measurements are also presented.

 

Keywords: Concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
2618 The Effects of Peristalsis on Dispersion of a Micropolar Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a micropolar fluid in the presence of magnetic field and both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition under long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient increases with amplitude ratio, cross viscosity coefficient and heterogeneous chemical reaction rate parameter. But it decreases with magnetic field parameter and homogeneous chemical reaction rate parameter. It can be noted that the presence of peristalsis enhances dispersion of a solute.

Keywords: Peristalsis, Dispersion, Chemical reaction, Magneticfield, Micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
2617 Dextran Modified Silicon Photonic Microring Resonator Sensors

Authors: Jessie Yiying Quah, Vivian Netto, Jack Sheng Kee, Eric Mouchel La Fosse, Mi Kyoung Park

Abstract:

We present a dextran modified silicon microring resonator sensor for high density antibody immobilization. An array of sensors consisting of three sensor rings and a reference ring was fabricated and its surface sensitivity and the limit of detection were obtained using polyelectrolyte multilayers. The mass sensitivity and the limit of detection of the fabricated sensor ring are 0.35 nm/ng mm-2 and 42.8 pg/mm2 in air, respectively. Dextran modified sensor surface was successfully prepared by covalent grafting of oxidized dextran on 3-aminopropyltriethoxysilane (APTES) modified silicon sensor surface. The antibody immobilization on hydrogel dextran matrix improves 40% compared to traditional antibody immobilization method via APTES and glutaraldehyde linkage.

Keywords: Antibody immobilization, Dextran, Immunosensor, Label-free detection, Silicon micro-ring resonator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
2616 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction

Authors: Talal Alsulaiman, Khaldoun Khashanah

Abstract:

In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent’s attributes. Also, the influence of social networks in the developing of agents interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.

Keywords: Artificial stock markets, agent based simulation, bounded rationality, behavioral finance, artificial neural network, interaction, scale-free networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
2615 The Effect of Chemical Treatment on TL Glow Curves of CdS/ZnS Thin Films Deposited by Vacuum Deposition Method

Authors: N. Dahbi, D-E. Arafah

Abstract:

The effect of chemical treatment in CdCl2 and thermal annealing in 400°C, on the defect structures of potentially useful ZnS\CdS solar cell thin films deposited onto quartz substrate and prepared by vacuum deposition method was studied using the Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various deposited samples studied. After annealing, however, it was observed that the intensity and activation energy of TL signal increases with loss of the low temperature electron traps.

Keywords: CdS, chemical treatment, heat treatment, Thermoluminescence, trapping parameters, thin film, vacuumdeposition, ZnS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
2614 Assessing Mobile Robotic Telepresence Based On Measures of Social Telepresence

Authors: A. Bagherzadhalimi, E. Di Maria

Abstract:

The feedbacks obtained regarding the sense of presence from pilot users operating a Mobile Robotic presence (MRP) system to visit a simulated museum are reported in this paper. The aim is to investigate how much the perception of system’s usefulness and ease of use is affected by operators’ sense of social telepresence (presence) in the remote location. Therefore, scenarios of visiting a museum are simulated and the user operators are supposed to perform some regular tasks inside the remote environment including interaction with local users, navigation and visiting the artworks. Participants were divided into two groups, those who had previous experience of operation and interaction with a MRP system and those who never had experience. Based on the results, both groups provided different feedbacks. Moreover, there was a significant association between user’s sense of presence and their perception of system usefulness and ease of use.

Keywords: Mobile Robotic Telepresence, Museum, Social Telepresence, Usability test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
2613 Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator

Authors: Neda Navidi, Rene Jr. Landry

Abstract:

Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone.

Keywords: Driving behavior, integration, IMU, GNSS, monitoring, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
2612 Modified Poly(pyrrole) Film Based Biosensors for Phenol Detection

Authors: S. Korkut, M. S. Kilic, E. Erhan

Abstract:

In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly(Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other.

Keywords: Carbon nanotube, Phenol biosensor, Polypyrrole, Poly(glutaraldehyde).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
2611 A Multiagent System for Distributed Systems Management

Authors: H. M. Kelash, H. M. Faheem, M. Amoon

Abstract:

The demand for autonomous resource management for distributed systems has increased in recent years. Distributed systems require an efficient and powerful communication mechanism between applications running on different hosts and networks. The use of mobile agent technology to distribute and delegate management tasks promises to overcome the scalability and flexibility limitations of the currently used centralized management approach. This work proposes a multiagent system that adopts mobile agents as a technology for tasks distribution, results collection, and management of resources in large-scale distributed systems. A new mobile agent-based approach for collecting results from distributed system elements is presented. The technique of artificial intelligence based on intelligent agents giving the system a proactive behavior. The presented results are based on a design example of an application operating in a mobile environment.

Keywords: distributed management, distributed systems, efficiency, mobile agent, multiagent, response time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
2610 DTMF Based Robot Assisted Tele Surgery

Authors: Vikas Pandey, T. L. Joshy, Vyshak Vijayan, N. Babu

Abstract:

A new and cost effective robotic device was designed for remote tele surgery using dual tone multi frequency technology (DTMF). Tele system with Dual Tone Multiple Frequency has a large capability in sending and receiving of data in hardware and software. The robot consists of DC motors for arm movements and it is controlled manually through a mobile phone through DTMF Technology. The system enables the surgeon from base station to send commands through mobile phone to the patient’s robotic system which includes two robotic arms that translate the input into actual instrument manipulation. A mobile phone attached to the microcontroller 8051 which can activate robot through relays. The Remote robot-assisted tele surgery eliminates geographic constraints for getting surgical expertise where it is needed and allows an expert surgeon to teach or proctor the performance of surgical technique by real-time intervention.

Keywords: Robot, Microcontroller, DTMF, Tele surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
2609 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection

Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay

Abstract:

With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.

Keywords: credit card fraud detection, user authentication, behavioral biometrics, machine learning, literature survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
2608 Mineral and Some Physico-Chemical Composition of 'Karayemis' (Prunus laurocerasus L.) Fruits Grown in Northeast Turkey

Authors: İsmail Hakkı Kalyoncu, Nilda Ersoy, Ayşe Yalcın Elidemir, Cansu Dolek

Abstract:

Some physico-chemical characteristics and mineral composition of 'Karayemis' (Prunus laurocerasus L.) fruits which grown naturally in Norteast Turkey was studied. 28 minerals ( Al, Mg, B, Mn, Co, Na, Ca, Ni, Cd, P, Cr, Pb, Cu, S, Fe, Zn, K, Sr, Li, As, V, Ag, Ba, Br, Ga, In, Se, Ti) were analyzed and 19 minerals were present at ascertainable levels. Karayemis fruit was richest in potassium (7938.711 ppm), magnesium (1242.186 ppm) and calcium (1158.853 ppm). And some physico-chemical characteristics of Karayemis fruit was investigated. Fruit length, fruit width, fruit thickness, fruit weight, total soluble solids, colour, protein, crude ash, crude fiber, crude oil values were determined as 2.334 cm, 1.884 cm, 2.112 cm, 5.35 g, 20.1 %, S99M99Y99, 0.29 %, 0.22 %, 6.63 % and 0.001 %, respectively. The seed of fruit mean weight, length, width and thickness were found to be 0.41 g, 1.303 cm, 0.921 cm and 0.803, respectively.

Keywords: Prunus laurocerasus L., physico-chemical properties, nutritional properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
2607 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: Food (Ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500