Search results for: Swarm intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 646

Search results for: Swarm intelligence

76 Fuzzy Sequential Algorithm for Discrimination and Decision Maker in Sporting Events

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

Events discrimination and decision maker in sport field are the subject of many interesting studies in computer vision and artificial intelligence. A large volume of research has been conducted for automatic semantic event detection and summarization of sports videos. Indeed the results of these researches have a very significant contribution, as well to television broadcasts as to the football teams, since the result of sporting event can be reflected on the economic field. In this paper, we propose a novel fuzzy sequential technique which lead to discriminate events and specify the technico-tactics on going the game, nor the fuzzy system or the sequential one, may be able to respond to the asked question, in fact fuzzy process is not sufficient, it does not respect the chronological order according the time of various events, similarly the sequential process needs flexibility about the parameters used in this study, it may affect a membership degree of each parameter on the one hand and respect the sequencing of events for each frame on the other hand. Indeed this technique describes special events such as dribbling, headings, short sprints, rapid acceleration or deceleration, turning, jumping, kicking, ball occupation, and tackling according velocity vectors of the two players and the ball direction.

Keywords: Sequential process, Event detection, Soccer videos analysis, Fuzzy process, Spatio-temporal parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
75 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
74 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
73 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran

Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi

Abstract:

Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.

Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
72 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education

Authors: Yong W. Foo, Lai M. Tang

Abstract:

Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.

Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25
71 ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec

Authors: D. A. K. S. Gunaratna, N. D. Kodikara, H. L. Premaratne

Abstract:

Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.

Keywords: Artificial intelligence, linear transformation and pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
70 Technology for Enhancing the Learning and Teaching Experience in Higher Education

Authors: Sara M. Ismael, Ali H. Al-Badi

Abstract:

The rapid development and growth of technology has changed the method of obtaining information for educators and learners. Technology has created a new world of collaboration and communication among people. Incorporating new technology into the teaching process can enhance learning outcomes. Billions of individuals across the world are now connected together, and are cooperating and contributing their knowledge and intelligence. Time is no longer wasted in waiting until the teacher is ready to share information as learners can go online and get it immediatelt.

The objectives of this paper are to understand the reasons why changes in teaching and learning methods are necessary, to find ways of improving them, and to investigate the challenges that present themselves in the adoption of new ICT tools in higher education institutes.

 To achieve these objectives two primary research methods were used: questionnaires, which were distributed among students at higher educational institutes and multiple interviews with faculty members (teachers) from different colleges and universities, which were conducted to find out why teaching and learning methodology should change.

The findings show that both learners and educators agree that educational technology plays a significant role in enhancing instructors’ teaching style and students’ overall learning experience; however, time constraints, privacy issues, and not being provided with enough up-to-date technology do create some challenges.

Keywords: E-books, educational technology, educators, e-learning, learners, social media, Web 2.0, LMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
69 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5536
68 A Real-Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitrios E. Kontaxis, George Litainas, Dimitrios P. Ptochos, Vaggelis P. Ptochos, Sotirios P. Ptochos, Dimitrios Beletsis, Konstantinos Kritikakis, Milan Sunaric

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination and sustainability of the supply chain procedures. The technology, the features and the characteristics of a complete, proprietary system, including hardware, firmware and software tools - developed in the context of a co-funded R&D program - are addressed and presented in this paper. 

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633
67 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search

Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok

Abstract:

The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.

Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
66 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
65 Validation of Automotive Centrals Using Hardware in the Loop-Body Control Unit and Lights

Authors: Marley Rosa Luciano, Rodney Rezende Saldanha

Abstract:

The race for electrification and the need for innovation to attract customers has led the automotive industry to do something different with vehicles. New emissions control challenges and efficient technological availability are the pillars of creation. The growing demand to upgrade industrial manufacturing systems creates actions that directly impact vehicle production. With this comes the search for new prototyping methods and virtual tools for component testing and validation, and vehicle systems have established themselves. The demand for Electronic Control Units (ECU) is increasing due to the availability of intelligence and safety in today's vehicles, directly affecting their development, performance, and functional testing. In order to keep up with global changes, the automotive industry uses different virtual environments to produce, verify and validate their vehicles and test prototypes used during development. Therefore, in this paper, integration and validation were performed using the Hardware in the Loop (HIL) test platform, focusing on the ECU Body Control Module (BCM). Then, a brief commentary reviews other test medium platforms, such as the Plywood Buck (PWB), and examines the reliability, flexibility, installation time, and cost of the three test platforms, software in the loop (SIL), Model in the loop (MIL), and HIL, to review their benefits, challenges, and issues in use and information to optimize the use of each platform and test medium.

Keywords: Automotive, Electronic Central Unit, xIL, Hardware in the loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324
64 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
63 Fuzzy Ideology based Long Term Load Forecasting

Authors: Jagadish H. Pujar

Abstract:

Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).

Keywords: Fuzzy Logic Control (FLC), Data DependantFactors(DDF), Model Dependent Factors(MDF), StatisticalError(SE), Short Term Load Forecasting (STLF), MiscellaneousError(ME).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
62 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: Multiclass classification, convolution neural network, OpenCV, Data Augmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814
61 AI-Driven Cloud Security: Proactive Defense Against Evolving Cyber Threats

Authors: Ashly Joseph

Abstract:

Cloud computing has become an essential component of enterprises and organizations globally in the current era of digital technology. The cloud has a multitude of advantages, including scalability, flexibility, and cost-effectiveness, rendering it an appealing choice for data storage and processing. The increasing storage of sensitive information in cloud environments has raised significant concerns over the security of such systems. The frequency of cyber threats and attacks specifically aimed at cloud infrastructure has been increasing, presenting substantial dangers to the data, reputation, and financial stability of enterprises. Conventional security methods can become inadequate when confronted with ever intricate and dynamic threats. Artificial Intelligence (AI) technologies possess the capacity to significantly transform cloud security through their ability to promptly identify and thwart assaults, adjust to emerging risks, and offer intelligent perspectives for proactive security actions. The objective of this research study is to investigate the utilization of AI technologies in augmenting the security measures within cloud computing systems. This paper aims to offer significant insights and recommendations for businesses seeking to protect their cloud-based assets by analyzing the present state of cloud security, the capabilities of AI, and the possible advantages and obstacles associated with using AI into cloud security policies.

Keywords: Machine Learning, Natural Learning Processing, Denial-of-Service attacks, Sentiment Analysis, Cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
60 Sorting Primitives and Genome Rearrangementin Bioinformatics: A Unified Perspective

Authors: Swapnoneel Roy, Minhazur Rahman, Ashok Kumar Thakur

Abstract:

Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and proteinprotein interactions, and the modeling of evolution. Various global rearrangements of permutations, such as reversals and transpositions,have recently become of interest because of their applications in computational molecular biology. A reversal is an operation that reverses the order of a substring of a permutation. A transposition is an operation that swaps two adjacent substrings of a permutation. The problem of determining the smallest number of reversals required to transform a given permutation into the identity permutation is called sorting by reversals. Similar problems can be defined for transpositions and other global rearrangements. In this work we perform a study about some genome rearrangement primitives. We show how a genome is modelled by a permutation, introduce some of the existing primitives and the lower and upper bounds on them. We then provide a comparison of the introduced primitives.

Keywords: Sorting Primitives, Genome Rearrangements, Transpositions, Block Interchanges, Strip Exchanges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
59 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
58 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
57 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that Microsoft project does not store the data in database, so the data cannot automatically be imported from Microsoft Project into Microsoft Excel. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI (Business Intelligence) for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, Human Resource (HR) reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: Primavera P6, SQL, Power BI, Earned Value Management, Integration Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
56 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
55 Object Identification with Color, Texture, and Object-Correlation in CBIR System

Authors: Awais Adnan, Muhammad Nawaz, Sajid Anwar, Tamleek Ali, Muhammad Ali

Abstract:

Needs of an efficient information retrieval in recent years in increased more then ever because of the frequent use of digital information in our life. We see a lot of work in the area of textual information but in multimedia information, we cannot find much progress. In text based information, new technology of data mining and data marts are now in working that were started from the basic concept of database some where in 1960. In image search and especially in image identification, computerized system at very initial stages. Even in the area of image search we cannot see much progress as in the case of text based search techniques. One main reason for this is the wide spread roots of image search where many area like artificial intelligence, statistics, image processing, pattern recognition play their role. Even human psychology and perception and cultural diversity also have their share for the design of a good and efficient image recognition and retrieval system. A new object based search technique is presented in this paper where object in the image are identified on the basis of their geometrical shapes and other features like color and texture where object-co-relation augments this search process. To be more focused on objects identification, simple images are selected for the work to reduce the role of segmentation in overall process however same technique can also be applied for other images.

Keywords: Object correlation, Geometrical shape, Color, texture, features, contents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
54 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
53 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: Autonomous, indoor robot, mechatronic, omnidirectional robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 586
52 AI-Based Approaches for Task Offloading, ‎Resource ‎Allocation and Service Placement of ‎IoT Applications: State of the Art

Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib‎

Abstract:

In order to support the continued growth, critical latency of ‎IoT ‎applications and ‎various obstacles of traditional data centers, ‎Mobile Edge ‎Computing (MEC) has ‎emerged as a promising solution that extends the cloud data-processing and decision-making to edge devices. ‎By adopting a MEC structure, IoT applications could be executed ‎locally, on ‎an edge server, different fog nodes or distant cloud ‎data centers. However, we are ‎often ‎faced with wanting to optimize conflicting criteria such as ‎minimizing energy ‎consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge ‎devices and trying to ‎keep ‎high performance (reducing ‎response time, increasing throughput and service availability) ‎at the same ‎time‎. Achieving one goal may affect the other making Task Offloading (TO), ‎Resource Allocation (RA) and Service Placement (SP) complex ‎processes. ‎It is a nontrivial multi-objective optimization ‎problem ‎to study the trade-off between conflicting criteria. ‎The paper provides a survey on different TO, SP and RA recent Multi-‎Objective Optimization (MOO) approaches used in edge computing environments, particularly Artificial Intelligent (AI) ones, to satisfy various objectives, constraints and dynamic conditions related to IoT applications‎.

Keywords: Mobile Edge Computing, Multi-Objective Optimization, Artificial Intelligence ‎Approaches, Task Offloading, Resource Allocation, Service Placement‎.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
51 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.

Keywords: Control system, hydroponics, machine learning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207
50 Object Negotiation Mechanism for an Intelligent Environment Using Event Agents

Authors: Chiung-Hui Chen

Abstract:

With advancements in science and technology, the concept of the Internet of Things (IoT) has gradually developed. The development of the intelligent environment adds intelligence to objects in the living space by using the IoT. In the smart environment, when multiple users share the living space, if different service requirements from different users arise, then the context-aware system will have conflicting situations for making decisions about providing services. Therefore, the purpose of establishing a communication and negotiation mechanism among objects in the intelligent environment is to resolve those service conflicts among users. This study proposes developing a decision-making methodology that uses “Event Agents” as its core. When the sensor system receives information, it evaluates a user’s current events and conditions; analyses object, location, time, and environmental information; calculates the priority of the object; and provides the user services based on the event. Moreover, when the event is not single but overlaps with another, conflicts arise. This study adopts the “Multiple Events Correlation Matrix” in order to calculate the degree values of incidents and support values for each object. The matrix uses these values as the basis for making inferences for system service, and to further determine appropriate services when there is a conflict.

Keywords: Internet of things, intelligent object, event agents, negotiation mechanism, degree of similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
49 Design of Smart Urban Lighting by Using Social Sustainability Approach

Authors: Mohsen Noroozi, Maryam Khalili

Abstract:

Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.

Keywords: Behavior model, internet of things, social sustainability, urban lighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
48 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
47 A Cascaded Fuzzy Inference System for Dynamic Online Portals Customization

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

In our modern world, more physical transactions are being substituted by electronic transactions (i.e. banking, shopping, and payments), many businesses and companies are performing most of their operations through the internet. Instead of having a physical commerce, internet visitors are now adapting to electronic commerce (e-Commerce). The ability of web users to reach products worldwide can be greatly benefited by creating friendly and personalized online business portals. Internet visitors will return to a particular website when they can find the information they need or want easily. Dealing with this human conceptualization brings the incorporation of Artificial/Computational Intelligence techniques in the creation of customized portals. From these techniques, Fuzzy-Set technologies can make many useful contributions to the development of such a human-centered endeavor as e-Commerce. The main objective of this paper is the implementation of a Paradigm for the Intelligent Design and Operation of Human-Computer interfaces. In particular, the paradigm is quite appropriate for the intelligent design and operation of software modules that display information (such Web Pages, graphic user interfaces GUIs, Multimedia modules) on a computer screen. The human conceptualization of the user personal information is analyzed throughout a Cascaded Fuzzy Inference (decision-making) System to generate the User Ascribe Qualities, which identify the user and that can be used to customize portals with proper Web links.

Keywords: Fuzzy Logic, Internet, Electronic Commerce, Intelligent Portals, Electronic Shopping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788