Search results for: ISAREG simulation model
8922 Fractional Order Feedback Control of a Ball and Beam System
Authors: Santosh Kr. Choudhary
Abstract:
In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.
Keywords: Fractional order calculus, fractional order controller, fractional order system, ball and beam system, PIλDμ controller, modelling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35678921 Generalized Exploratory Model of Human Category Learning
Authors: Toshihiko Matsuka
Abstract:
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13938920 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation
Authors: Attapon Charoenpon, Ekkarach Pankeaw
Abstract:
This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.
Keywords: Aerodynamic, Characteristic Equation, Angle ofAttack, Polynomial interpolation, Trajectories
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36768919 Using Technology with a New Model of Management Development by Simulation of Neural Network and its Application on Intelligent Schools
Authors: Ahmad Ghayoumi, Mehdi Ghayoumi
Abstract:
Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand management improvement is best described as the process from which managers learn and improve their skills not only to benefit themselves but also their employing organizations Here, we present a model Management improvement System that has been applied on some schools and have made strict improvement.Keywords: Intelligent school, Management development system, Learning station, Teaching station
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11018918 A Simulation Method to Find the Optimal Design of Photovoltaic Home System in Malaysia, Case Study: A Building Integrated Photovoltaic in Putra Jaya
Authors: Riza Muhida, Maisarah Ali, Puteri Shireen Jahn Kassim, Muhammad Abu Eusuf, Agus G.E. Sutjipto, Afzeri
Abstract:
Over recent years, the number of building integrated photovoltaic (BIPV) installations for home systems have been increasing in Malaysia. The paper concerns an analysis - as part of current Research and Development (R&D) efforts - to integrate photovoltaics as an architectural feature of a detached house in the new satellite township of Putrajaya, Malaysia. The analysis was undertaken using calculation and simulation tools to optimize performance of BIPV home system. In this study, a the simulation analysis was undertaken for selected bungalow units based on a long term recorded weather data for city of Kuala Lumpur. The simulation and calculation was done with consideration of a PV panels' tilt and direction, shading effect and economical considerations. A simulation of the performance of a grid connected BIPV house in Kuala Lumpur was undertaken. This case study uses a 60 PV modules with power output of 2.7 kW giving an average of PV electricity output is 255 kWh/month..
Keywords: Building integrated photovoltaic, Malaysia, Simulation, panels' tilt and direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22988917 Near Shore Wave Manipulation for Electricity Generation
Authors: K. D. R. Jagath-Kumara, D. D. Dias
Abstract:
The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging, and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the first approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results, and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque, and the angular velocity.Keywords: Near-shore sea waves, Renewable energy, Wave energy conversion, Wave manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19988916 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation
Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski
Abstract:
A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.
Keywords: Air bubbles, CFD simulation, jet pump, practical applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20218915 Dispenser Longitudinal Movement ControlDesign Based on Auto - Disturbances –Rejection - Controller
Authors: Qiaozhen Song
Abstract:
Based on the feature of model disturbances and uncertainty being compensated dynamically in auto – disturbances-rejection-controller (ADRC), a new method using ADRC is proposed for the decoupling control of dispenser longitudinal movement in big flight envelope. Developed from nonlinear model directly, ADRC is especially suitable for dynamic model that has big disturbances. Furthermore, without changing the structure and parameters of the controller in big flight envelope, this scheme can simplify the design of flight control system. The simulation results in big flight envelope show that the system achieves high dynamic performance, steady state performance and the controller has strong robustness.
Keywords: ADRC, ESO, nonlinear system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16158914 Multi-Agent Simulation of Wayfinding for Rescue Operation during Building Fire
Authors: G. Sokhansefat, M. Delavar, M. Banedj-Schafii
Abstract:
Recently research on human wayfinding has focused mainly on mental representations rather than processes of wayfinding. The objective of this paper is to demonstrate the rationality behind applying multi-agent simulation paradigm to the modeling of rescuer team wayfinding in order to develop computational theory of perceptual wayfinding in crisis situations using image schemata and affordances, which explains how people find a specific destination in an unfamiliar building such as a hospital. The hypothesis of this paper is that successful navigation is possible if the agents are able to make the correct decision through well-defined cues in critical cases, so the design of the building signage is evaluated through the multi-agent-based simulation. In addition, a special case of wayfinding in a building, finding one-s way through three hospitals, is used to demonstrate the model. Thereby, total rescue time for rescue operation during building fire is computed. This paper discuses the computed rescue time for various signage localization and provides experimental result for optimization of building signage design. Therefore the most appropriate signage design resulted in the shortest total rescue time in various situations.Keywords: Multi-Agent system (MAS), Spatial Cognition, Wayfinding, Indoor Environment, Geospatial Information System (GIS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23898913 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem
Authors: A. H. Akhaveissy
Abstract:
Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16038912 Simulation of Voltage Controlled Tunable All Pass Filter Using LM13700 OTA
Authors: Bhaba Priyo Das, Neville Watson, Yonghe Liu
Abstract:
In recent years Operational Transconductance Amplifier based high frequency integrated circuits, filters and systems have been widely investigated. The usefulness of OTAs over conventional OP-Amps in the design of both first order and second order active filters are well documented. This paper discusses some of the tunability issues using the Matlab/Simulink® software which are previously unreported for any commercial OTA. Using the simulation results two first order voltage controlled all pass filters with phase tuning capability are proposed.
Keywords: All pass filter, Operational Transconductance Amplifier, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36278911 Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror
Authors: Yiping Wang, Zhengqi Gu, Weiping Li, Xiaohui Lin
Abstract:
The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).
Keywords: Aerodynamic noise, BEM, DES, FW-H acousticanalogy, LES
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29438910 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch
Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng
Abstract:
Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.
Keywords: Creeping control strategy, direct shift gearbox, temperature variation, wet clutch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7258909 Testing the Performance of Rival Warehousing Policies through Discrete Event Simulation
Authors: João Vilas-Boas, Abdul Suleman, Luis Moreira
Abstract:
This research tested the performance of alternative warehouse designs concerning the picking process. The chosen performance measures were Travel Distance and Total Fulfilment Time. An explanatory case study was built up around a model implemented with SIMUL8. Hypotheses were set by selecting outcomes from the literature survey matching popular empirical findings. 17.4% reductions were found for Total Fulfilment Time and Resource Utilisation. The latter was then used as a proxy for operational efficiency. Literal replication of theoretical data-patterns was considered as an internal validity sign. Assessing the estimated changes benefits ahead of implementation was found to be a contribution to practice.Keywords: Warehouse discrete-event simulation, Storage policy selection and assessment, Performance evaluation of order picking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21268908 Developing a Statistical Model for Electromagnetic Environment for Mobile Wireless Networks
Authors: C. Temaneh Nyah
Abstract:
The analysis of electromagnetic environment using deterministic mathematical models is characterized by the impossibility of analyzing a large number of interacting network stations with a priori unknown parameters, and this is characteristic, for example, of mobile wireless communication networks. One of the tasks of the tools used in designing, planning and optimization of mobile wireless network is to carry out simulation of electromagnetic environment based on mathematical modelling methods, including computer experiment, and to estimate its effect on radio communication devices. This paper proposes the development of a statistical model of electromagnetic environment of a mobile wireless communication network by describing the parameters and factors affecting it including the propagation channel and their statistical models.Keywords: Electromagnetic Environment, Statistical model, Wireless communication network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19278907 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17908906 Study of Characteristics of Multi-Layer Piezoelectric Transformers by using 3-D Finite Element Method
Authors: C. Panya-Isara, T. Kulworawanichpong, P. Pao-La-Or
Abstract:
Piezoelectric transformers are electronic devices made from piezoelectric materials. The piezoelectric transformers as the name implied are used for changing voltage signals from one level to another. Electrical energy carried with signals is transferred by means of mechanical vibration. Characterizing in both electrical and mechanical properties leads to extensively use and efficiency enhancement of piezoelectric transformers in various applications. In this paper, study and analysis of electrical and mechanical properties of multi-layer piezoelectric transformers in forms of potential and displacement distribution throughout the volume, respectively. This paper proposes a set of quasi-static mathematical model of electromechanical coupling for piezoelectric transformer by using a set of partial differential equations. Computer-based simulation utilizing the three-dimensional finite element method (3-D FEM) is exploited as a tool for visualizing potentials and displacements distribution within the multi-layer piezoelectric transformer. This simulation was conducted by varying a number of layers. In this paper 3, 5 and 7 of the circular ring type were used. The computer simulation based on the use of the FEM has been developed in MATLAB programming environment.Keywords: Multi-layer Piezoelectric Transformer, 3-D Finite Element Method (3-D FEM), Electro-mechanical Coupling, Mechanical Vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16508905 Numerical Simulation of the Kurtosis Effect on the EHL Problem
Authors: S. Gao, S. Srirattayawong
Abstract:
In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature are defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the main parameters such as pressure distribution, minimal film thickness, viscosity, and density changes. The results obtained show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. A rough surface with kurtosis value of more than 3 has greater influence over the fluctuated shape of pressure distribution than in other cases.
Keywords: CFD, EHL, Kurtosis, Surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21858904 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform
Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo
Abstract:
The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.
Keywords: Energy-efficient, fog computing, IoT, telehealth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808903 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks
Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian
Abstract:
Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.
Keywords: Desalting unit, Crude oil, Neural Networks, Simulation, Recovery, Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42618902 Survival Model for Partly Interval-Censored Data with Application to Anti D in Rhesus D Negative Studies
Authors: F. A. M. Elfaki, Amar Abobakar, M. Azram, M. Usman
Abstract:
This paper discusses regression analysis of partly interval-censored failure time data, which is occur in many fields including demographical, epidemiological, financial, medical and sociological studies. For the problem, we focus on the situation where the survival time of interest can be described by the additive hazards model in the present of partly interval-censored. A major advantage of the approach is its simplicity and it can be easily implemented by using R software. Simulation studies are conducted which indicate that the approach performs well for practical situations and comparable to the existing methods. The methodology is applied to a set of partly interval-censored failure time data arising from anti D in Rhesus D negative studies.
Keywords: Anti D in Rhesus D negative, Cox’s model, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16998901 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA), is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.
Keywords: Balanced truncation, Clustering, Dominant pole, Hankel norm, Model reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26948900 Airport Check-In Optimization by IP and Simulation in Combination
Authors: Ahmad Thanyan Al-Sultan
Abstract:
The check-in area of airport terminal is one of the busiest sections at airports at certain periods. The passengers are subjected to queues and delays during the check-in process. These delays and queues are due to constraints in the capacity of service facilities. In this project, the airport terminal is decomposed into several check-in areas. The airport check-in scheduling problem requires both a deterministic (integer programming) and stochastic (simulation) approach. Integer programming formulations are provided to minimize the total number of counters in each check-in area under the realistic constraint that counters for one and the same flight should be adjacent and the desired number of counters remaining in each area should be fixed during check-in operations. By using simulation, the airport system can be modeled to study the effects of various parameters such as number of passengers on a flight and check-in counter opening and closing time.
Keywords: Airport terminal, Integer programming, Scheduling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28438899 Real-time Interactive Ocean Wave Simulation using Multithread
Authors: K. Prachumrak, T. Kanchanapornchai
Abstract:
This research simulates one of the natural phenomena, the ocean wave. Our goal is to be able to simulate the ocean wave at real-time rate with the water surface interacting with objects. The wave in this research is calm and smooth caused by the force of the wind above the ocean surface. In order to make the simulation of the wave real-time, the implementation of the GPU and the multithreading techniques are used here. Based on the fact that the new generation CPUs, for personal computers, have multi cores, they are useful for the multithread. This technique utilizes more than one core at a time. This simulation is programmed by C language with OpenGL. To make the simulation of the wave look more realistic, we applied an OpenGL technique called cube mapping (environmental mapping) to make water surface reflective and more realistic.Keywords: Interactive wave, ocean wave, wind effect, multithread
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24848898 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates
Authors: Zina Ghiloufi, Tahar Khir
Abstract:
A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.
Keywords: Numerical simulation, CFD, k-ω (SST), cold room, dates, cooling rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11128897 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger
Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He
Abstract:
Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.Keywords: Liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11648896 Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof
Authors: M. Raciti Castelli, A. Castelli, E. Benini
Abstract:
The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.
Keywords: CFD, roof, building, wind
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17398895 Reliability Evaluation of Composite Electric Power System Based On Latin Hypercube Sampling
Authors: R. Ashok Bakkiyaraj, N. Kumarappan
Abstract:
This paper investigates the suitability of Latin Hypercube sampling (LHS) for composite electric power system reliability analysis. Each sample generated in LHS is mapped into an equivalent system state and used for evaluating the annualized system and load point indices. DC loadflow based state evaluation model is solved for each sampled contingency state. The indices evaluated are loss of load probability, loss of load expectation, expected demand not served and expected energy not supplied. The application of the LHS is illustrated through case studies carried out using RBTS and IEEE-RTS test systems. Results obtained are compared with non-sequential Monte Carlo simulation and state enumeration analytical approaches. An error analysis is also carried out to check the LHS method’s ability to capture the distributions of the reliability indices. It is found that LHS approach estimates indices nearer to actual value and gives tighter bounds of indices than non-sequential Monte Carlo simulation.
Keywords: Composite power system, Latin Hypercube sampling, Monte Carlo simulation, Reliability evaluation, Variance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31148894 Application of Ant Colony Optimization for Multi-objective Production Problems
Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat
Abstract:
This paper proposes a meta-heuristic called Ant Colony Optimization to solve multi-objective production problems. The multi-objective function is to minimize lead time and work in process. The problem is related to the decision variables, i.e.; distance and process time. According to decision criteria, the mathematical model is formulated. In order to solve the model an ant colony optimization approach has been developed. The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. One example is given to illustrate the effectiveness of the proposed model. The proposed formulations; Max-Min Ant system are then used to solve the problem and the results evaluate the performance and efficiency of the proposed algorithm using simulation.
Keywords: Ant colony optimization, multi-objective problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19058893 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate
Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh
Abstract:
Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274